Poject:GoldData: Difference between revisions

From LaTeX CAS translator demo
Jump to navigation Jump to search
Redirected page to wmf:Privacy policy
Redirected page to wmf:Privacy policy
Line 243: Line 243:
     ]
     ]
}</syntaxhighlight>
}</syntaxhighlight>
</div></div>|}
</div></div>
|}

Revision as of 11:51, 6 February 2021

Result table
# Formula Title Evaluation data
1 \begin{align}J_{-(m+\frac{1}{2})}(x) &= (-1)^{m+1} Y_{m+\frac{1}{2}}(x), \\Y_{-(m+\frac{1}{2})}(x) &= (-1)^m J_{m+\frac{1}{2}}(x).\end{align} Bessel function
Full data:
{
    "id": 1,
    "pid": 51,
    "eid": "math.51.18",
    "title": "Bessel function",
    "formulae": [
        {
            "id": "FORMULA_0f521573a47e7fd187dafed615b0ecce",
            "formula": "\\begin{align}J_{-(m+\\frac{1}{2})}(x) &= (-1)^{m+1} Y_{m+\\frac{1}{2}}(x), \\\\Y_{-(m+\\frac{1}{2})}(x) &= (-1)^m J_{m+\\frac{1}{2}}(x).\\end{align}",
            "semanticFormula": "\\begin{align}\\BesselJ{- (m + \\frac{1}{2})}@{x} &= (- 1)^{m+1} \\BesselY{m+\\frac{1}{2}}@{x} , \\\\ \\BesselY{- (m + \\frac{1}{2})}@{x} &= (-1)^m \\BesselJ{m+\\frac{1}{2}}@{x} .\\end{align}",
            "confidence": 0.8803349492974287,
            "translations": {
                "Mathematica": {
                    "translation": "BesselJ[- (m +Divide[1,2]), x] == (- 1)^(m + 1)* BesselY[m +Divide[1,2], x]\nBesselY[- (m +Divide[1,2]), x] == (- 1)^(m)* BesselJ[m +Divide[1,2], x]",
                    "translationInformation": {
                        "subEquations": [
                            "BesselJ[- (m +Divide[1,2]), x] = (- 1)^(m + 1)* BesselY[m +Divide[1,2], x]",
                            "BesselY[- (m +Divide[1,2]), x] = (- 1)^(m)* BesselJ[m +Divide[1,2], x]"
                        ],
                        "freeVariables": [
                            "m",
                            "x"
                        ],
                        "constraints": [],
                        "tokenTranslations": {
                            "\\pgcd": "Greatest common divisor; Example: \\pgcd{m,n}\nWill be translated to: GCD[$0]\nRelevant links to definitions:\nDLMF:         http:\/\/dlmf.nist.gov\/27.1#p2.t1.r3\nMathematica:  https:\/\/reference.wolfram.com\/language\/ref\/GCD.html",
                            "\\BesselY": "Bessel function second kind; Example: \\BesselY{v}@{z}\nWill be translated to: BesselY[$0, $1]\nBranch Cuts: (-\\infty, 0]\nRelevant links to definitions:\nDLMF:         http:\/\/dlmf.nist.gov\/10.2#E3\nMathematica:  https:\/\/",
                            "\\BesselJ": "Bessel function first kind; Example: \\BesselJ{v}@{z}\nWill be translated to: BesselJ[$0, $1]\nBranch Cuts: if v \\notin \\Integers: (-\\infty, 0]\nRelevant links to definitions:\nDLMF:         http:\/\/dlmf.nist.gov\/10.2#E2\nMathematica:  https:\/\/reference.wolfram.com\/language\/ref\/BesselJ.html"
                        }
                    }
                },
                "Maple": {
                    "translation": "BesselJ(- (m +(1)\/(2)), x) = (- 1)^(m + 1)* BesselY(m +(1)\/(2), x); BesselY(- (m +(1)\/(2)), x) = (- 1)^(m)* BesselJ(m +(1)\/(2), x)",
                    "translationInformation": {
                        "subEquations": [
                            "BesselJ(- (m +(1)\/(2)), x) = (- 1)^(m + 1)* BesselY(m +(1)\/(2), x)",
                            "BesselY(- (m +(1)\/(2)), x) = (- 1)^(m)* BesselJ(m +(1)\/(2), x)"
                        ],
                        "freeVariables": [
                            "m",
                            "x"
                        ],
                        "constraints": [],
                        "tokenTranslations": {
                            "\\pgcd": "Greatest common divisor; Example: \\pgcd{m,n}\nWill be translated to: gcd($0)\nRelevant links to definitions:\nDLMF:  http:\/\/dlmf.nist.gov\/27.1#p2.t1.r3\nMaple: https:\/\/www.maplesoft.com\/support\/help\/Maple\/view.aspx?path=gcd",
                            "\\BesselY": "Bessel function second kind; Example: \\BesselY{v}@{z}\nWill be translated to: BesselY($0, $1)\nBranch Cuts: (-\\infty, 0]\nRelevant links to definitions:\nDLMF:  http:\/\/dlmf.nist.gov\/10.2#E3\nMaple: https:\/\/www.maplesoft.com\/support\/help\/maple\/view.aspx?path=Bessel",
                            "\\BesselJ": "Bessel function first kind; Example: \\BesselJ{v}@{z}\nWill be translated to: BesselJ($0, $1)\nBranch Cuts: if v \\notin \\Integers: (-\\infty, 0]\nRelevant links to definitions:\nDLMF:  http:\/\/dlmf.nist.gov\/10.2#E2\nMaple: https:\/\/www.maplesoft.com\/support\/help\/maple\/view.aspx?path=Bessel"
                        }
                    }
                }
            },
            "positions": [
                {
                    "section": 8,
                    "sentence": 8,
                    "word": 32
                }
            ],
            "includes": [
                "Y_{\\alpha}",
                "J_{-\\alpha}(x)",
                "J",
                "J_{\\alpha}(x)",
                "Y_{n}",
                "J_{n}(x)",
                "m",
                "Y_{\\alpha}(x)",
                "J_{\\alpha}",
                "x",
                "(-1)^{m}",
                "J_{n}",
                "J_{\\alpha}(z)",
                "J_{\\alpha}(k)",
                "Y",
                "J_{n + m}(x)"
            ],
            "isPartOf": [],
            "definiens": [
                {
                    "definition": "Bessel function first kind",
                    "score": 2
                },
                {
                    "definition": "Bessel function second kind",
                    "score": 2
                },
                {
                    "definition": "above relation",
                    "score": 0
                },
                {
                    "definition": "spherical Bessel",
                    "score": 1
                },
                {
                    "definition": "integer",
                    "score": 1
                },
                {
                    "definition": "nonnegative integer",
                    "score": 1
                },
                {
                    "definition": "relationship",
                    "score": 0
                },
                {
                    "definition": "function",
                    "score": 1
                },
                {
                    "definition": "recurrence relation",
                    "score": 1
                },
                {
                    "definition": "Bessel",
                    "score": 1
                },
                {
                    "definition": "large number of other known integral",
                    "score": 0
                },
                {
                    "definition": "positive zero",
                    "score": 0
                },
                {
                    "definition": "entire function of genus",
                    "score": 0
                },
                {
                    "definition": "identity",
                    "score": 0
                },
                {
                    "definition": "orthogonality relation",
                    "score": 0
                },
                {
                    "definition": "Bessel function",
                    "score": 2
                },
                {
                    "definition": "term",
                    "score": 0
                },
                {
                    "definition": "real zero",
                    "score": 0
                },
                {
                    "definition": "similar relation",
                    "score": 0
                },
                {
                    "definition": "Hankel",
                    "score": 1
                },
                {
                    "definition": "Bessel function of the second kind",
                    "score": 2
                },
                {
                    "definition": "limit",
                    "score": 0
                },
                {
                    "definition": "ordinary Bessel function",
                    "score": 1
                },
                {
                    "definition": "case",
                    "score": 0
                },
                {
                    "definition": "negative integer",
                    "score": 0
                },
                {
                    "definition": "integral formula",
                    "score": 0
                },
                {
                    "definition": "small argument",
                    "score": 0
                },
                {
                    "definition": "average",
                    "score": 0
                },
                {
                    "definition": "Bessel function of the first kind",
                    "score": 2
                },
                {
                    "definition": "reference",
                    "score": 0
                },
                {
                    "definition": "series expansion",
                    "score": 0
                },
                {
                    "definition": "spherical Bessel function",
                    "score": 1
                },
                {
                    "definition": "Abel 's identity",
                    "score": 0
                },
                {
                    "definition": "important property of Bessel 's equation",
                    "score": 1
                },
                {
                    "definition": "particular Bessel",
                    "score": 1
                },
                {
                    "definition": "solution of Bessel 's equation",
                    "score": 0
                },
                {
                    "definition": "Wronskian of the solution",
                    "score": 0
                },
                {
                    "definition": "series",
                    "score": 0
                },
                {
                    "definition": "closure equation",
                    "score": 0
                }
            ]
        }
    ]
}