Benchmark: Difference between revisions
Jump to navigation
Jump to search
Redirected page to wmf:Privacy policy |
Redirected page to wmf:Privacy policy |
||
Line 1: | Line 1: | ||
__NOTOC__ | __NOTOC__ | ||
== Bessel | == Bessel function == | ||
; Gold ID : 1 | ; Gold ID : 1 | ||
; Link : https://sigir21.wmflabs.org/wiki/Bessel_function#math.51.18 | ; Link : https://sigir21.wmflabs.org/wiki/Bessel_function#math.51.18 | ||
; Formula : <math>\begin{align}J_{-(m+\frac{1}{2})}(x) &= (-1)^{m+1} Y_{m+\frac{1}{2}}(x), \\Y_{-(m+\frac{1}{2})}(x) &= (-1)^m J_{m+\frac{1}{2}}(x).\end{align}</math> | ; Formula : <math>\begin{align}J_{-(m+\frac{1}{2})}(x) &= (-1)^{m+1} Y_{m+\frac{1}{2}}(x), \\Y_{-(m+\frac{1}{2})}(x) &= (-1)^m J_{m+\frac{1}{2}}(x).\end{align}</math> | ||
; TeX Source : <syntaxhighlight lang="tex" | ; TeX Source : <syntaxhighlight lang="tex" inline>\begin{align}J_{-(m+\frac{1}{2})}(x) &= (-1)^{m+1} Y_{m+\frac{1}{2}}(x), \\Y_{-(m+\frac{1}{2})}(x) &= (-1)^m J_{m+\frac{1}{2}}(x).\end{align}</syntaxhighlight> | ||
{| class="wikitable" | {| class="wikitable" | ||
Line 20: | Line 20: | ||
=== Semantic LaTeX === | === Semantic LaTeX === | ||
; Translation : <syntaxhighlight lang="tex" inline>\begin{align}\BesselJ{- (m + \frac{1}{2})}@{x} &= (- 1)^{m+1} \BesselY{m+\frac{1}{2}}@{x} , \\ \BesselY{- (m + \frac{1}{2})}@{x} &= (-1)^m \BesselJ{m+\frac{1}{2}}@{x} .\end{align}</syntaxhighlight> | ; Translation : <syntaxhighlight lang="tex" inline>\begin{align}\BesselJ{-(m+\frac{1}{2})}@{x} &=(- 1)^{m+1} \BesselY{m+\frac{1}{2}}@{x} , \\ \BesselY{-(m+\frac{1}{2})}@{x} &=(- 1)^m \BesselJ{m+\frac{1}{2}}@{x} .\end{align}</syntaxhighlight> | ||
; Expected (Gold Entry) : <syntaxhighlight lang="tex" inline>\begin{align}\BesselJ{- (m + \frac{1}{2})}@{x} &= (- 1)^{m+1} \BesselY{m+\frac{1}{2}}@{x} , \\ \BesselY{- (m + \frac{1}{2})}@{x} &= (-1)^m \BesselJ{m+\frac{1}{2}}@{x} .\end{align}</syntaxhighlight> | ; Expected (Gold Entry) : <syntaxhighlight lang="tex" inline>\begin{align}\BesselJ{- (m + \frac{1}{2})}@{x} &= (- 1)^{m+1} \BesselY{m+\frac{1}{2}}@{x} , \\ \BesselY{- (m + \frac{1}{2})}@{x} &= (-1)^m \BesselJ{m+\frac{1}{2}}@{x} .\end{align}</syntaxhighlight> | ||
Line 26: | Line 26: | ||
=== Mathematica === | === Mathematica === | ||
; Translation : <syntaxhighlight lang="mathematica" inline>BesselJ[- (m +Divide[1,2]), x] == (- 1)^(m + 1)* BesselY[m +Divide[1,2], x] | ; Translation : <syntaxhighlight lang="mathematica" inline>BesselJ[-(m +Divide[1,2]), x] == (- 1)^(m + 1)* BesselY[m +Divide[1,2], x] | ||
; Expected (Gold Entry) : <syntaxhighlight lang="mathematica" inline>BesselJ[- (m +Divide[1,2]), x] == (- 1)^(m + 1)* BesselY[m +Divide[1,2], x] | BesselY[-(m +Divide[1,2]), x] == (- 1)^(m)* BesselJ[m +Divide[1,2], x]</syntaxhighlight> | ||
; Expected (Gold Entry) : <syntaxhighlight lang="mathematica" inline>BesselJ[- (m +Divide[1,2]), x] == (- 1)^(m + 1)* BesselY[m +Divide[1,2], x] BesselY[- (m +Divide[1,2]), x] == (- 1)^(m)* BesselJ[m +Divide[1,2], x]</syntaxhighlight> | |||
=== Maple === | === Maple === | ||
; Translation : <syntaxhighlight lang="mathematica" inline>BesselJ(- (m +(1) | ; Translation : <syntaxhighlight lang="mathematica" inline>BesselJ(-(m +(1)/(2)), x) = (- 1)^(m + 1)* BesselY(m +(1)/(2), x); BesselY(-(m +(1)/(2)), x) = (- 1)^(m)* BesselJ(m +(1)/(2), x)</syntaxhighlight> | ||
; Expected (Gold Entry) : <syntaxhighlight lang="mathematica" inline>BesselJ(- (m +(1) | ; Expected (Gold Entry) : <syntaxhighlight lang="mathematica" inline>BesselJ(- (m +(1)/(2)), x) = (- 1)^(m + 1)* BesselY(m +(1)/(2), x); BesselY(- (m +(1)/(2)), x) = (- 1)^(m)* BesselJ(m +(1)/(2), x)</syntaxhighlight> |
Revision as of 11:03, 1 September 2021
Bessel function
- Gold ID
- 1
- Link
- https://sigir21.wmflabs.org/wiki/Bessel_function#math.51.18
- Formula
- TeX Source
\begin{align}J_{-(m+\frac{1}{2})}(x) &= (-1)^{m+1} Y_{m+\frac{1}{2}}(x), \\Y_{-(m+\frac{1}{2})}(x) &= (-1)^m J_{m+\frac{1}{2}}(x).\end{align}
Translation Results | ||
---|---|---|
Semantic LaTeX | Mathematica Translation | Maple Translations |
Semantic LaTeX
- Translation
\begin{align}\BesselJ{-(m+\frac{1}{2})}@{x} &=(- 1)^{m+1} \BesselY{m+\frac{1}{2}}@{x} , \\ \BesselY{-(m+\frac{1}{2})}@{x} &=(- 1)^m \BesselJ{m+\frac{1}{2}}@{x} .\end{align}
- Expected (Gold Entry)
\begin{align}\BesselJ{- (m + \frac{1}{2})}@{x} &= (- 1)^{m+1} \BesselY{m+\frac{1}{2}}@{x} , \\ \BesselY{- (m + \frac{1}{2})}@{x} &= (-1)^m \BesselJ{m+\frac{1}{2}}@{x} .\end{align}
Mathematica
- Translation
BesselJ[-(m +Divide[1,2]), x] == (- 1)^(m + 1)* BesselY[m +Divide[1,2], x] BesselY[-(m +Divide[1,2]), x] == (- 1)^(m)* BesselJ[m +Divide[1,2], x]
- Expected (Gold Entry)
BesselJ[- (m +Divide[1,2]), x] == (- 1)^(m + 1)* BesselY[m +Divide[1,2], x] BesselY[- (m +Divide[1,2]), x] == (- 1)^(m)* BesselJ[m +Divide[1,2], x]
Maple
- Translation
BesselJ(-(m +(1)/(2)), x) = (- 1)^(m + 1)* BesselY(m +(1)/(2), x); BesselY(-(m +(1)/(2)), x) = (- 1)^(m)* BesselJ(m +(1)/(2), x)
- Expected (Gold Entry)
BesselJ(- (m +(1)/(2)), x) = (- 1)^(m + 1)* BesselY(m +(1)/(2), x); BesselY(- (m +(1)/(2)), x) = (- 1)^(m)* BesselJ(m +(1)/(2), x)