q-Laguerre polynomials

From LaTeX CAS translator demo
Revision as of 20:34, 23 September 2018 by imported>Citation bot (Redirected page to wmf:Privacy policy)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search

In mathematics, the q-Laguerre polynomials, or generalized Stieltjes–Wigert polynomials P(α)
n
(x;q) are a family of basic hypergeometric orthogonal polynomials in the basic Askey scheme introduced by Daniel S. Moak (1981). Roelof Koekoek, Peter A. Lesky, and René F. Swarttouw (2010, 14) give a detailed list of their properties.

Definition

The q-Laguerre polynomials are given in terms of basic hypergeometric functions and the Pochhammer symbol by

Ln(α)(x;q)=(qα+1;q)n(q;q)n1ϕ1(qn;qα+1;q,qn+α+1x)

Orthogonality

Recurrence and difference relations

Rodrigues formula

Generating function

Relation to other polynomials

References

  • Gasper, George; Rahman, Mizan (2004), Basic hypergeometric series, Encyclopedia of Mathematics and its Applications, 96 (2nd ed.), Cambridge University Press, doi:10.2277/0521833574, ISBN 978-0-521-83357-8, MR 2128719
  • Koekoek, Roelof; Lesky, Peter A.; Swarttouw, René F. (2010), Hypergeometric orthogonal polynomials and their q-analogues, Springer Monographs in Mathematics, Berlin, New York: Springer-Verlag, doi:10.1007/978-3-642-05014-5, ISBN 978-3-642-05013-8, MR 2656096
  • Koornwinder, Tom H.; Wong, Roderick S. C.; Koekoek, Roelof; Swarttouw, René F. (2010), http://dlmf.nist.gov/18 |contribution-url= missing title (help), in Olver, Frank W. J.; Lozier, Daniel M.; Boisvert, Ronald F.; Clark, Charles W. (eds.), NIST Handbook of Mathematical Functions, Cambridge University Press, ISBN 978-0-521-19225-5, MR 2723248
  • Moak, Daniel S. (1981), "The q-analogue of the Laguerre polynomials", J. Math. Anal. Appl., 81 (1): 20–47, doi:10.1016/0022-247X(81)90048-2, MR 0618759