Gold 10
Legendre polynomials
- Gold ID
- 10
- Link
- https://sigir21.wmflabs.org/wiki/Legendre_polynomials#math.60.57
- Formula
- TeX Source
\frac{1}{\left| \mathbf{x}-\mathbf{x}' \right|} = \frac{1}{\sqrt{r^2+{r'}^2-2r{r'}\cos\gamma}} = \sum_{\ell=0}^\infty \frac{{r'}^\ell}{r^{\ell+1}} P_\ell(\cos \gamma)
Translation Results | ||
---|---|---|
Semantic LaTeX | Mathematica Translation | Maple Translations |
- |
Semantic LaTeX
- Translation
\frac{1}{|\mathbf{x} - \mathbf{x} '|} = \frac{1}{\sqrt{r^2+{r'}^2-2r{r'}\cos\gamma}} = \sum_{\ell=0}^\infty \frac{{r'}^\ell}{r^{\ell+1}} \LegendrepolyP{\ell}@{\cos \gamma}
- Expected (Gold Entry)
\frac{1}{|\mathbf{x} - \mathbf{x} '|} = \frac{1}{\sqrt{r^2+{r'}^2-2r{r'}\cos\gamma}} = \sum_{\ell=0}^\infty \frac{{r'}^\ell}{r^{\ell+1}} \LegendrepolyP{\ell}@{\cos \gamma}
Mathematica
- Translation
- Expected (Gold Entry)
Divide[1, Abs[x - x\[Prime]]] == Divide[1, Sqrt[r^2+(r\[Prime])^(2)-2*r*r\[Prime] Cos[\[Gamma]]]] == Sum[Divide[(r\[Prime])^(\[ScriptL]), r^(\[ScriptL]+1)]*LegendreP[\[ScriptL], Cos[\[Gamma]]], {\[ScriptL], 0, Infinity}]
Maple
- Translation
- Expected (Gold Entry)