Gold 13
Hermite polynomials
- Gold ID
- 13
- Link
- https://sigir21.wmflabs.org/wiki/Hermite_polynomials#math.63.109
- Formula
- TeX Source
E(x, y; u) := \sum_{n=0}^\infty u^n \, \psi_n (x) \, \psi_n (y) = \frac{1}{\sqrt{\pi (1 - u^2)}} \, \exp\left(-\frac{1 - u}{1 + u} \, \frac{(x + y)^2}{4} - \frac{1 + u}{1 - u} \, \frac{(x - y)^2}{4}\right)
Translation Results | ||
---|---|---|
Semantic LaTeX | Mathematica Translation | Maple Translations |
Semantic LaTeX
- Translation
E(x , y ; u) : = \sum_{n=0}^\infty u^n \psi_n(x) \psi_n(y) = \frac{1}{\sqrt{\cpi(1 - u^2)}} \exp(- \frac{1 - u}{1 + u} \frac{(x + y)^2}{4} - \frac{1 + u}{1 - u} \frac{(x - y)^2}{4})
- Expected (Gold Entry)
E(x , y ; u) : = \sum_{n=0}^\infty u^n \psi_n(x) \psi_n(y) = \frac{1}{\sqrt{\cpi(1 - u^2)}} \exp(- \frac{1 - u}{1 + u} \frac{(x + y)^2}{4} - \frac{1 + u}{1 - u} \frac{(x - y)^2}{4})
Mathematica
- Translation
\[CapitalEpsilon][x_, y_, u_] := Sum[(u)^(n)* Subscript[\[Psi], n][x]* Subscript[\[Psi], n][y], {n, 0, Infinity}, GenerateConditions->None] == Divide[1,Sqrt[Pi*(1 - (u)^(2))]]*Exp[-Divide[1 - u,1 + u]*Divide[(x + y)^(2),4]-Divide[1 + u,1 - u]*Divide[(x - y)^(2),4]]
- Expected (Gold Entry)
\[CapitalEpsilon][x_, y_, u_] := Sum[(u)^(n)* Subscript[\[Psi], n][x]* Subscript[\[Psi], n][y], {n, 0, Infinity}] == Divide[1,Sqrt[Pi*(1 - (u)^(2))]]*Exp[-Divide[1 - u,1 + u]*Divide[(x + y)^(2),4]-Divide[1 + u,1 - u]*Divide[(x - y)^(2),4]]
Maple
- Translation
Epsilon := (x, y, u) -> sum((u)^(n)* psi[n](x)* psi[n](y), n = 0..infinity) = (1)/(sqrt(Pi*(1 - (u)^(2))))*exp(-(1 - u)/(1 + u)*((x + y)^(2))/(4)-(1 + u)/(1 - u)*((x - y)^(2))/(4))
- Expected (Gold Entry)
Epsilon := (x, y, u) -> sum((u)^(n)* psi[n](x)* psi[n](y), n = 0..infinity) = (1)/(sqrt(Pi*(1 - (u)^(2))))*exp(-(1 - u)/(1 + u)*((x + y)^(2))/(4)-(1 + u)/(1 - u)*((x - y)^(2))/(4))