Gold 45
Whittaker function
- Gold ID
- 45
- Link
- https://sigir21.wmflabs.org/wiki/Whittaker_function#math.95.0
- Formula
- TeX Source
\frac{d^2w}{dz^2}+\left(-\frac{1}{4}+\frac{\kappa}{z}+\frac{1/4-\mu^2}{z^2}\right)w=0
Translation Results | ||
---|---|---|
Semantic LaTeX | Mathematica Translation | Maple Translations |
Semantic LaTeX
- Translation
\deriv [2]{w}{z} +(- \frac{1}{4} + \frac{\kappa}{z} + \frac{1/4-\mu^2}{z^2}) w = 0
- Expected (Gold Entry)
\deriv [2]{w}{z} +(- \frac{1}{4} + \frac{\kappa}{z} + \frac{1/4-\mu^2}{z^2}) w = 0
Mathematica
- Translation
D[w, {z, 2}]+(-Divide[1,4]+Divide[\[Kappa],z]+Divide[1/4 - \[Mu]^(2),(z)^(2)])*w == 0
- Expected (Gold Entry)
D[w, {z, 2}]+(-Divide[1,4]+Divide[\[Kappa],z]+Divide[1/4 - \[Mu]^(2),(z)^(2)])*w == 0
Maple
- Translation
diff(w, [z$(2)])+(-(1)/(4)+(kappa)/(z)+(1/4 - (mu)^(2))/((z)^(2)))*w = 0
- Expected (Gold Entry)
diff(w, [z$\$$(2)])+(-(1)/(4)+(kappa)/(z)+(1/4 - (mu)^(2))/((z)^(2)))*w = 0