Continuous q-Hermite polynomials
Jump to navigation
Jump to search
In mathematics, the continuous q-Hermite polynomials are a family of basic hypergeometric orthogonal polynomials in the basic Askey scheme. Roelof Koekoek, Peter A. Lesky, and René F. Swarttouw (2010, 14) give a detailed list of their properties.
Definition
The polynomials are given in terms of basic hypergeometric functions and the Pochhammer symbol.
Recurrence and difference relations
with the initial conditions
From the above, one can easily calculate:
Rodrigues formula
This section is empty. You can help by adding to it. (September 2011) |
Generating function
Relation to other polynomials
This section is empty. You can help by adding to it. (September 2011) |
References
- Gasper, George; Rahman, Mizan (2004), Basic hypergeometric series, Encyclopedia of Mathematics and its Applications, 96 (2nd ed.), Cambridge University Press, doi:10.2277/0521833574, ISBN 978-0-521-83357-8, MR 2128719
- Koekoek, Roelof; Lesky, Peter A.; Swarttouw, René F. (2010), Hypergeometric orthogonal polynomials and their q-analogues, Springer Monographs in Mathematics, Berlin, New York: Springer-Verlag, doi:10.1007/978-3-642-05014-5, ISBN 978-3-642-05013-8, MR 2656096
- Koornwinder, Tom H.; Wong, Roderick S. C.; Koekoek, Roelof; Swarttouw, René F. (2010), http://dlmf.nist.gov/18
|contribution-url=
missing title (help), in Olver, Frank W. J.; Lozier, Daniel M.; Boisvert, Ronald F.; Clark, Charles W. (eds.), NIST Handbook of Mathematical Functions, Cambridge University Press, ISBN 978-0-521-19225-5, MR 2723248
Categories:
- Articles to be expanded from September 2011
- Articles with invalid date parameter in template
- All articles to be expanded
- Articles with empty sections from September 2011
- All articles with empty sections
- Articles using small message boxes
- CS1 errors: bare URL
- Orthogonal polynomials
- Q-analogs
- Special hypergeometric functions