Gold 33
Jump to navigation
Jump to search
Scorer's function
- Gold ID
- 33
- Link
- https://sigir21.wmflabs.org/wiki/Scorer's_function#math.83.3
- Formula
- TeX Source
\mathrm{Gi}(x) = \frac{1}{\pi} \int_0^\infty \sin\left(\frac{t^3}{3} + xt\right)\, dt
Translation Results | ||
---|---|---|
Semantic LaTeX | Mathematica Translation | Maple Translations |
Semantic LaTeX
- Translation
\ScorerGi@{x} = \frac{1}{\cpi} \int_0^\infty \sin(\frac{t^3}{3} + xt) \diff{t}
- Expected (Gold Entry)
\ScorerGi@{x} = \frac{1}{\cpi} \int_0^\infty \sin(\frac{t^3}{3} + xt) \diff{t}
Mathematica
- Translation
ScorerGi[x] == Divide[1,Pi]*Integrate[Sin[Divide[(t)^(3),3]+ x*t], {t, 0, Infinity}, GenerateConditions->None]
- Expected (Gold Entry)
ScorerGi[x] == Divide[1,Pi]*Integrate[Sin[Divide[(t)^(3),3]+ x*t], {t, 0, Infinity}]
Maple
- Translation
AiryBi(x)*(int(AiryAi(t), t = (x) .. infinity))+AiryAi(x)*(int(AiryBi(t), t = 0 .. (x))) = (1)/(Pi)*int(sin(((t)^(3))/(3)+ x*t), t = 0..infinity)
- Expected (Gold Entry)
AiryBi(x)*(int(AiryAi(t), t = (x) .. infinity))+AiryAi(x)*(int(AiryBi(t), t = 0 .. (x))) = (1)/(Pi)*int(sin(((t)^(3))/(3)+ x*t), t = 0..infinity)