Gold 73
Jump to navigation
Jump to search
Continuous Hahn polynomials
- Gold ID
- 73
- Link
- https://sigir21.wmflabs.org/wiki/Continuous_Hahn_polynomials#math.125.15
- Formula
- TeX Source
P_n^{(\alpha,\beta)}=\lim_{t\to\infty}t^{-n}p_n\left(\tfrac12xt; \tfrac12(\alpha+1-it), \tfrac12(\beta+1+it), \tfrac12(\alpha+1+it), \tfrac12(\beta+1-it)\right)
Translation Results | ||
---|---|---|
Semantic LaTeX | Mathematica Translation | Maple Translations |
- |
Semantic LaTeX
- Translation
P_n^{(\alpha,\beta)} = \lim_{t\to\infty} t^{-n} \contHahnpolyp{n}@{\tfrac12 xt}{\tfrac12(\alpha + 1 - \iunit t)}{\tfrac12(\beta + 1 + \iunit t)}{\tfrac12(\alpha + 1 + \iunit t)}{\tfrac12(\beta + 1 - \iunit t)}
- Expected (Gold Entry)
\JacobipolyP{\alpha}{\beta}{n}@{x} = \lim_{t\to\infty} t^{-n} \contHahnpolyp{n}@{\tfrac12 xt}{\tfrac12(\alpha + 1 - \iunit t)}{\tfrac12(\beta + 1 + \iunit t)}{\tfrac12(\alpha + 1 + \iunit t)}{\tfrac12(\beta + 1 - \iunit t)}
Mathematica
- Translation
(Subscript[P, n])^(\[Alpha], \[Beta]) == Limit[(t)^(- n)* I^(n)*Divide[Pochhammer[Divide[1,2]*(\[Alpha]+ 1 - I*t) + Divide[1,2]*(\[Alpha]+ 1 + I*t), n]*Pochhammer[Divide[1,2]*(\[Alpha]+ 1 - I*t) + Divide[1,2]*(\[Beta]+ 1 - I*t), n], (n)!] * HypergeometricPFQ[{-(n), n + 2*Re[Divide[1,2]*(\[Alpha]+ 1 - I*t) + Divide[1,2]*(\[Beta]+ 1 + I*t)] - 1, Divide[1,2]*(\[Alpha]+ 1 - I*t) + I*(Divide[1,2]*x*t)}, {Divide[1,2]*(\[Alpha]+ 1 - I*t) + Divide[1,2]*(\[Alpha]+ 1 + I*t), Divide[1,2]*(\[Alpha]+ 1 - I*t) + Divide[1,2]*(\[Beta]+ 1 - I*t)}, 1], t -> Infinity, GenerateConditions->None]
- Expected (Gold Entry)
JacobiP[n, \[Alpha], \[Beta], x] == Limit[(t)^(- n)* I^(n)*Divide[Pochhammer[Divide[1,2]*(\[Alpha]+ 1 - I*t) + Divide[1,2]*(\[Alpha]+ 1 + I*t), n]*Pochhammer[Divide[1,2]*(\[Alpha]+ 1 - I*t) + Divide[1,2]*(\[Beta]+ 1 - I*t), n], (n)!] * HypergeometricPFQ[{-(n), n + 2*Re[Divide[1,2]*(\[Alpha]+ 1 - I*t) + Divide[1,2]*(\[Beta]+ 1 + I*t)] - 1, Divide[1,2]*(\[Alpha]+ 1 - I*t) + I*(Divide[1,2]*x*t)}, {Divide[1,2]*(\[Alpha]+ 1 - I*t) + Divide[1,2]*(\[Alpha]+ 1 + I*t), Divide[1,2]*(\[Alpha]+ 1 - I*t) + Divide[1,2]*(\[Beta]+ 1 - I*t)}, 1], t -> Infinity]
Maple
- Translation
- Expected (Gold Entry)