id | 1 |
---|
pid | 51 |
---|
eid | "math.51.18" |
---|
title | "Bessel function" |
---|
formulae | id | "FORMULA_0f521573a47e7fd187dafed615b0ecce" |
---|
formula | "\begin{align}J_{-(m+\frac{1}{2})}(x) &= (-1)^{m+1} Y_{m+\frac{1}{2}}(x), \\Y_{-(m+\frac{1}{2})}(x) &= (-1)^m J_{m+\frac{1}{2}}(x).\end{align}" |
---|
semanticFormula | "\begin{align}\BesselJ{- (m + \frac{1}{2})}@{x} &= (- 1)^{m+1} \BesselY{m+\frac{1}{2}}@{x} , \\ \BesselY{- (m + \frac{1}{2})}@{x} &= (-1)^m \BesselJ{m+\frac{1}{2}}@{x} .\end{align}" |
---|
confidence | 0.8803349492974287 |
---|
translations | Mathematica | translation | "BesselJ[- (m +Divide[1,2]), x] == (- 1)^(m + 1)* BesselY[m +Divide[1,2], x]
BesselY[- (m +Divide[1,2]), x] == (- 1)^(m)* BesselJ[m +Divide[1,2], x]" |
---|
translationInformation | subEquations | "BesselJ[- (m +Divide[1,2]), x] = (- 1)^(m + 1)* BesselY[m +Divide[1,2], x]" |
"BesselY[- (m +Divide[1,2]), x] = (- 1)^(m)* BesselJ[m +Divide[1,2], x]" |
|
---|
freeVariables | |
---|
constraints | |
---|
tokenTranslations | \pgcd | "Greatest common divisor; Example: \pgcd{m,n}
Will be translated to: GCD[$0]
Relevant links to definitions:
DLMF: http://dlmf.nist.gov/27.1#p2.t1.r3
Mathematica: https://reference.wolfram.com/language/ref/GCD.html" |
---|
\BesselY | "Bessel function second kind; Example: \BesselY{v}@{z}
Will be translated to: BesselY[$0, $1]
Branch Cuts: (-\infty, 0]
Relevant links to definitions:
DLMF: http://dlmf.nist.gov/10.2#E3
Mathematica: https://" |
---|
\BesselJ | "Bessel function first kind; Example: \BesselJ{v}@{z}
Will be translated to: BesselJ[$0, $1]
Branch Cuts: if v \notin \Integers: (-\infty, 0]
Relevant links to definitions:
DLMF: http://dlmf.nist.gov/10.2#E2
Mathematica: https://reference.wolfram.com/language/ref/BesselJ.html" |
---|
|
---|
|
---|
|
---|
Maple | translation | "BesselJ(- (m +(1)/(2)), x) = (- 1)^(m + 1)* BesselY(m +(1)/(2), x); BesselY(- (m +(1)/(2)), x) = (- 1)^(m)* BesselJ(m +(1)/(2), x)" |
---|
translationInformation | subEquations | "BesselJ(- (m +(1)/(2)), x) = (- 1)^(m + 1)* BesselY(m +(1)/(2), x)" |
"BesselY(- (m +(1)/(2)), x) = (- 1)^(m)* BesselJ(m +(1)/(2), x)" |
|
---|
freeVariables | |
---|
constraints | |
---|
tokenTranslations | \pgcd | "Greatest common divisor; Example: \pgcd{m,n}
Will be translated to: gcd($0)
Relevant links to definitions:
DLMF: http://dlmf.nist.gov/27.1#p2.t1.r3
Maple: https://www.maplesoft.com/support/help/Maple/view.aspx?path=gcd" |
---|
\BesselY | "Bessel function second kind; Example: \BesselY{v}@{z}
Will be translated to: BesselY($0, $1)
Branch Cuts: (-\infty, 0]
Relevant links to definitions:
DLMF: http://dlmf.nist.gov/10.2#E3
Maple: https://www.maplesoft.com/support/help/maple/view.aspx?path=Bessel" |
---|
\BesselJ | "Bessel function first kind; Example: \BesselJ{v}@{z}
Will be translated to: BesselJ($0, $1)
Branch Cuts: if v \notin \Integers: (-\infty, 0]
Relevant links to definitions:
DLMF: http://dlmf.nist.gov/10.2#E2
Maple: https://www.maplesoft.com/support/help/maple/view.aspx?path=Bessel" |
---|
|
---|
|
---|
|
---|
|
---|
positions | |
---|
includes | "Y_{\alpha}" |
"J_{-\alpha}(x)" |
"J" |
"J_{\alpha}(x)" |
"Y_{n}" |
"J_{n}(x)" |
"m" |
"Y_{\alpha}(x)" |
"J_{\alpha}" |
"x" |
"(-1)^{m}" |
"J_{n}" |
"J_{\alpha}(z)" |
"J_{\alpha}(k)" |
"Y" |
"J_{n + m}(x)" |
|
---|
isPartOf | |
---|
definiens | definition | "Bessel function first kind" |
---|
score | 2 |
---|
|
definition | "Bessel function second kind" |
---|
score | 2 |
---|
|
definition | "above relation" |
---|
score | 0 |
---|
|
definition | "spherical Bessel" |
---|
score | 1 |
---|
|
definition | "integer" |
---|
score | 1 |
---|
|
definition | "nonnegative integer" |
---|
score | 1 |
---|
|
definition | "relationship" |
---|
score | 0 |
---|
|
definition | "function" |
---|
score | 1 |
---|
|
definition | "recurrence relation" |
---|
score | 1 |
---|
|
|
definition | "large number of other known integral" |
---|
score | 0 |
---|
|
definition | "positive zero" |
---|
score | 0 |
---|
|
definition | "entire function of genus" |
---|
score | 0 |
---|
|
definition | "identity" |
---|
score | 0 |
---|
|
definition | "orthogonality relation" |
---|
score | 0 |
---|
|
definition | "Bessel function" |
---|
score | 2 |
---|
|
|
definition | "real zero" |
---|
score | 0 |
---|
|
definition | "similar relation" |
---|
score | 0 |
---|
|
|
definition | "Bessel function of the second kind" |
---|
score | 2 |
---|
|
|
definition | "ordinary Bessel function" |
---|
score | 1 |
---|
|
|
definition | "negative integer" |
---|
score | 0 |
---|
|
definition | "integral formula" |
---|
score | 0 |
---|
|
definition | "small argument" |
---|
score | 0 |
---|
|
definition | "average" |
---|
score | 0 |
---|
|
definition | "Bessel function of the first kind" |
---|
score | 2 |
---|
|
definition | "reference" |
---|
score | 0 |
---|
|
definition | "series expansion" |
---|
score | 0 |
---|
|
definition | "spherical Bessel function" |
---|
score | 1 |
---|
|
definition | "Abel 's identity" |
---|
score | 0 |
---|
|
definition | "important property of Bessel 's equation" |
---|
score | 1 |
---|
|
definition | "particular Bessel" |
---|
score | 1 |
---|
|
definition | "solution of Bessel 's equation" |
---|
score | 0 |
---|
|
definition | "Wronskian of the solution" |
---|
score | 0 |
---|
|
|
definition | "closure equation" |
---|
score | 0 |
---|
|
|
---|
|
|
---|
|
id | 2 |
---|
pid | 52 |
---|
eid | "math.52.404" |
---|
title | "Ellipse" |
---|
formulae | id | "FORMULA_d3e28ddd096754fb8e1e52aaaa4f7770" |
---|
formula | "E(e) \,=\, \int_0^{\pi/2}\sqrt {1 - e^2 \sin^2\theta}\ d\theta" |
---|
semanticFormula | "\compellintEk@{e} = \int_0^{\cpi / 2} \sqrt{1 - e^2 \sin^2 \theta} \diff{\theta}" |
---|
confidence | 0.8896531556938116 |
---|
translations | Mathematica | translation | "EllipticE[(e)^2] == Integrate[Sqrt[1 - (e)^(2)*(Sin[\[Theta]])^(2)], {\[Theta], 0, Pi/2}, GenerateConditions->None]" |
---|
translationInformation | subEquations | "EllipticE[(e)^2] = Integrate[Sqrt[1 - (e)^(2)*(Sin[\[Theta]])^(2)], {\[Theta], 0, Pi/2}, GenerateConditions->None]" |
|
---|
freeVariables | |
---|
constraints | |
---|
tokenTranslations | \cpi | "Pi was translated to: Pi" |
---|
\expe | "Recognizes e with power as the exponential function. It was translated as a function." |
---|
\compellintEk | "Legendre's complete elliptic integral of the second kind; Example: \compellintEk@{k}
Will be translated to: EllipticE[($0)^2]
Relevant links to definitions:
DLMF: http://dlmf.nist.gov/19.2#E8
Mathematica: https://" |
---|
\sin | "Sine; Example: \sin@@{z}
Will be translated to: Sin[$0]
Relevant links to definitions:
DLMF: http://dlmf.nist.gov/4.14#E1
Mathematica: https://reference.wolfram.com/language/ref/Sin.html" |
---|
|
---|
|
---|
|
---|
Maple | translation | "EllipticE(e) = int(sqrt(1 - (e)^(2)*(sin(theta))^(2)), theta = 0..Pi/2)" |
---|
translationInformation | subEquations | "EllipticE(e) = int(sqrt(1 - (e)^(2)*(sin(theta))^(2)), theta = 0..Pi/2)" |
|
---|
freeVariables | |
---|
constraints | |
---|
tokenTranslations | \cpi | "Pi was translated to: Pi" |
---|
\expe | "Recognizes e with power as the exponential function. It was translated as a function." |
---|
\compellintEk | "Legendre's complete elliptic integral of the second kind; Example: \compellintEk@{k}
Will be translated to: EllipticE($0)
Relevant links to definitions:
DLMF: http://dlmf.nist.gov/19.2#E8
Maple: https://www.maplesoft.com/support/help/maple/view.aspx?path=EllipticE" |
---|
\sin | "Sine; Example: \sin@@{z}
Will be translated to: sin($0)
Relevant links to definitions:
DLMF: http://dlmf.nist.gov/4.14#E1
Maple: https://www.maplesoft.com/support/help/maple/view.aspx?path=sin" |
---|
|
---|
|
---|
|
---|
|
---|
positions | |
---|
includes | "\theta" |
"E" |
"\pi a b" |
"\pi" |
"e" |
"E(e)" |
|
---|
isPartOf | |
---|
definiens | definition | "complete elliptic integral of the second kind" |
---|
score | 2 |
---|
|
definition | "elementary function" |
---|
score | 1 |
---|
|
definition | "function" |
---|
score | 1 |
---|
|
definition | "length of the semi-major axis" |
---|
score | 2 |
---|
|
definition | "eccentricity" |
---|
score | 2 |
---|
|
definition | "circumference" |
---|
score | 0 |
---|
|
definition | "ellipse" |
---|
score | 1 |
---|
|
|
definition | "angular coordinate" |
---|
score | 1 |
---|
|
|
definition | "formula" |
---|
score | 0 |
---|
|
definition | "rotation angle" |
---|
score | 0 |
---|
|
|
---|
|
|
---|
|
id | 3 |
---|
pid | 53 |
---|
eid | "math.53.6" |
---|
title | "Elliptic integral" |
---|
formulae | id | "FORMULA_04e9de23897a3b23dee1a9b7312ad99e" |
---|
formula | "F(x;k) = u" |
---|
semanticFormula | "\incellintFk@{\asin@{\Jacobiellsnk@@{u}{k}}}{k} = u" |
---|
confidence | 0 |
---|
translations | Mathematica | translation | "EllipticF[ArcSin[JacobiSN[u, (k)^2]], (k)^2] == u" |
---|
translationInformation | subEquations | "EllipticF[ArcSin[JacobiSN[u, (k)^2]], (k)^2] = u" |
|
---|
freeVariables | |
---|
constraints | |
---|
tokenTranslations | |
---|
|
---|
|
---|
Maple | translation | "EllipticF(JacobiSN(u, k), k) = u" |
---|
translationInformation | subEquations | "EllipticF(JacobiSN(u, k), k) = u" |
|
---|
freeVariables | |
---|
constraints | |
---|
tokenTranslations | |
---|
|
---|
|
---|
|
---|
positions | |
---|
includes | |
---|
isPartOf | "F(\varphi,k) = F\left(\varphi \,|\, k^2\right) = F(\sin \varphi ; k) = \int_0^\varphi \frac {\mathrm{d}\theta}{\sqrt{1 - k^2 \sin^2 \theta}}" |
"F(x ; k) = \int_{0}^{x} \frac{\mathrm{d}t}{\sqrt{\left(1 - t^2\right)\left(1 - k^2 t^2\right)}}" |
"E(\varphi,k) = E\left(\varphi \,|\,k^2\right) = E(\sin\varphi;k) = \int_0^\varphi \sqrt{1-k^2 \sin^2\theta}\,\mathrm{d}\theta" |
"E(x;k) = \int_0^x \frac{\sqrt{1-k^2 t^2} }{\sqrt{1-t^2}}\,\mathrm{d}t" |
|
---|
definiens | definition | "inverse to the elliptic integral" |
---|
score | 1 |
---|
|
definition | "Jacobian elliptic function" |
---|
score | 2 |
---|
|
definition | "Legendre" |
---|
score | 1 |
---|
|
definition | "normal form" |
---|
score | 1 |
---|
|
definition | "trigonometric form" |
---|
score | 1 |
---|
|
definition | "incomplete elliptic integral of the second kind" |
---|
score | 0 |
---|
|
definition | "incomplete elliptic integral of the first kind" |
---|
score | 2 |
---|
|
|
---|
|
|
---|
|
id | 4 |
---|
pid | 54 |
---|
eid | "math.54.195" |
---|
title | "Gamma function" |
---|
formulae | id | "FORMULA_19a0f00da77cc439ad679c579a295bd2" |
---|
formula | "\frac{1}{\Gamma(z)} = \frac{i}{2\pi}\int_C (-t)^{-z}e^{-t}\,dt" |
---|
semanticFormula | "\frac{1}{\EulerGamma@{z}} = \frac{\iunit}{2 \cpi} \int_C(- t)^{-z} \expe^{-t} \diff{t}" |
---|
confidence | 0.8809245132365588 |
---|
translations | |
---|
positions | |
---|
includes | "C" |
"\Gamma" |
"\frac {1}{\Gamma (z)}" |
"z" |
"1" |
"\Gamma(r)" |
"t" |
"\pi" |
"\Gamma (z)" |
"\Gamma(z)" |
"\Pi\left(z\right)" |
"\Gamma\left(z\right)" |
"e^{-x}" |
|
---|
isPartOf | |
---|
definiens | definition | "related expression" |
---|
score | 0 |
---|
|
definition | "integer" |
---|
score | 0 |
---|
|
definition | "reflection formula" |
---|
score | 1 |
---|
|
|
definition | "Hankel contour" |
---|
score | 2 |
---|
|
definition | "Riemann sphere" |
---|
score | 1 |
---|
|
definition | "Hankel 's formula for the gamma function" |
---|
score | 2 |
---|
|
definition | "gamma function" |
---|
score | 2 |
---|
|
definition | "reciprocal gamma function" |
---|
score | 2 |
---|
|
|
---|
|
|
---|
|
id | 5 |
---|
pid | 55 |
---|
eid | "" |
---|
title | "Logarithm" |
---|
formulae | id | "FORMULA_579837194f2124b255d579031524a91c" |
---|
formula | "2^{4} = 2 \times2 \times 2 \times 2 = 16" |
---|
semanticFormula | "2^{4} = 2 \times2 \times 2 \times 2 = 16" |
---|
confidence | 0 |
---|
translations | Mathematica | translation | "(2)^(4) == 2 * 2 * 2 * 2 == 16" |
---|
translationInformation | subEquations | "(2)^(4) = 2 * 2 * 2 * 2" |
"2 * 2 * 2 * 2 = 16" |
|
---|
freeVariables | |
---|
constraints | |
---|
tokenTranslations | \times | "was translated to: *" |
---|
|
---|
|
---|
|
---|
Maple | translation | "(2)^(4) = 2 * 2 * 2 * 2 = 16" |
---|
translationInformation | subEquations | "(2)^(4) = 2 * 2 * 2 * 2" |
"2 * 2 * 2 * 2 = 16" |
|
---|
freeVariables | |
---|
constraints | |
---|
tokenTranslations | \times | "was translated to: *" |
---|
|
---|
|
---|
|
---|
|
---|
positions | |
---|
includes | |
---|
isPartOf | |
---|
definiens | definition | "example" |
---|
score | 2 |
---|
|
|
---|
|
|
---|
|
id | 6 |
---|
pid | 56 |
---|
eid | "math.56.40" |
---|
title | "Riemann zeta function" |
---|
formulae | id | "FORMULA_bd88ec58aa42c7a59bc2f4ff458a54cf" |
---|
formula | "\psi(x) := \sum_{n=1}^\infty e^{-n^2 \pi x}" |
---|
semanticFormula | "\psi(x) : = \sum_{n=1}^\infty \expe^{- n^2 \cpi x}" |
---|
confidence | 0.9073333333333333 |
---|
translations | Mathematica | translation | "\[Psi][x_] := Sum[Exp[-(n)^(2)*Pi*x], {n, 1, Infinity}]" |
---|
|
---|
Maple | translation | "psi := (x) -> sum(exp(-(n)^(2)*Pi*x), n=1..infinity)" |
---|
|
---|
|
---|
positions | |
---|
includes | |
---|
isPartOf | |
---|
definiens | definition | "analytic continuation" |
---|
score | 0 |
---|
|
definition | "absolute convergence" |
---|
score | 0 |
---|
|
definition | "convenience" |
---|
score | 0 |
---|
|
definition | "inversion" |
---|
score | 0 |
---|
|
definition | "process" |
---|
score | 0 |
---|
|
definition | "stricter requirement" |
---|
score | 0 |
---|
|
|
definition | "definition" |
---|
score | 2 |
---|
|
|
---|
|
|
---|
|
id | 7 |
---|
pid | 57 |
---|
eid | "math.57.2" |
---|
title | "Logarithmic integral function" |
---|
formulae | id | "FORMULA_36fb8f8330168b8f8acda0dc36851474" |
---|
formula | "\operatorname{li}(x) = \lim_{\varepsilon \to 0+} \left( \int_0^{1-\varepsilon} \frac{dt}{\ln t} + \int_{1+\varepsilon}^x \frac{dt}{\ln t} \right)" |
---|
semanticFormula | "\logint@{x} = \lim_{\varepsilon \to 0+}(\int_0^{1-\varepsilon} \frac{\diff{t}}{\ln t} + \int_{1+\varepsilon}^x \frac{\diff{t}}{\ln t})" |
---|
confidence | 0.8728566391293461 |
---|
translations | Mathematica | translation | "LogIntegral[x] == Limit[Integrate[Divide[1,Log[t]], {t, 0, 1 - \[CurlyEpsilon]}, GenerateConditions->None]+ Integrate[Divide[1,Log[t]], {t, 1 + \[CurlyEpsilon], x}, GenerateConditions->None], \[CurlyEpsilon] -> 0, Direction -> "FromAbove", GenerateConditions->None]" |
---|
translationInformation | subEquations | "LogIntegral[x] = Limit[Integrate[Divide[1,Log[t]], {t, 0, 1 - \[CurlyEpsilon]}, GenerateConditions->None]+ Integrate[Divide[1,Log[t]], {t, 1 + \[CurlyEpsilon], x}, GenerateConditions->None], \[CurlyEpsilon] -> 0, Direction -> "FromAbove", GenerateConditions->None]" |
|
---|
freeVariables | |
---|
constraints | |
---|
tokenTranslations | \logint | "Logarithmic integral; Example: \logint@{x}
Will be translated to: LogIntegral[$0]
Constraints: x > 1
Mathematica uses other branch cuts: (-\inf, 1)
Relevant links to definitions:
DLMF: http://dlmf.nist.gov/6.2#E8
Mathematica: https://reference.wolfram.com/language/ref/LogIntegral.html" |
---|
\ln | "Natural logarithm; Example: \ln@@{z}
Will be translated to: Log[$0]
Constraints: z != 0
Branch Cuts: (-\infty, 0]
Relevant links to definitions:
DLMF: http://dlmf.nist.gov/4.2#E2
Mathematica: https://reference.wolfram.com/language/ref/Log.html" |
---|
|
---|
|
---|
|
---|
Maple | translation | "Li(x) = limit(int((1)/(ln(t)), t = 0..1 - varepsilon)+ int((1)/(ln(t)), t = 1 + varepsilon..x), varepsilon = 0, right)" |
---|
translationInformation | subEquations | "Li(x) = limit(int((1)/(ln(t)), t = 0..1 - varepsilon)+ int((1)/(ln(t)), t = 1 + varepsilon..x), varepsilon = 0, right)" |
|
---|
freeVariables | |
---|
constraints | |
---|
tokenTranslations | \logint | "Logarithmic integral; Example: \logint@{x}
Will be translated to: Li($0)
Constraints: x > 1
Relevant links to definitions:
DLMF: http://dlmf.nist.gov/6.2#E8
Maple: https://www.maplesoft.com/support/help/maple/view.aspx?path=Li" |
---|
\ln | "Natural logarithm; Example: \ln@@{z}
Will be translated to: ln($0)
Constraints: z != 0
Branch Cuts: (-\infty, 0]
Relevant links to definitions:
DLMF: http://dlmf.nist.gov/4.2#E2
Maple: https://www.maplesoft.com/support/help/maple/view.aspx?path=ln" |
---|
|
---|
|
---|
|
---|
|
---|
positions | |
---|
includes | |
---|
isPartOf | |
---|
definiens | definition | "Cauchy principal value" |
---|
score | 2 |
---|
|
definition | "function" |
---|
score | 1 |
---|
|
definition | "singularity" |
---|
score | 1 |
---|
|
definition | "special function" |
---|
score | 1 |
---|
|
definition | "integral representation" |
---|
score | 1 |
---|
|
definition | "integral logarithm li" |
---|
score | 2 |
---|
|
definition | "logarithmic integral function" |
---|
score | 2 |
---|
|
definition | "logarithmic integral" |
---|
score | 2 |
---|
|
definition | "function li" |
---|
score | 1 |
---|
|
|
---|
|
|
---|
|
id | 8 |
---|
pid | 58 |
---|
eid | "math.58.61" |
---|
title | "Gaussian quadrature" |
---|
formulae | id | "FORMULA_8c49145544fca24efb8de07eb1275c09" |
---|
formula | "w_{i} = \frac{1}{p'_{n}(x_{i})}\int_{a}^{b}\omega(x)\frac{p_{n}(x)}{x-x_{i}}dx" |
---|
semanticFormula | "w_{i} = \frac{1}{p'_{n}(x_{i})} \int_{a}^{b} \omega(x) \frac{p_{n}(x)}{x-x_{i}} \diff{x}" |
---|
confidence | 0 |
---|
translations | Mathematica | translation | "Subscript[w, i] = Divide[1, Subscript[p\[Prime], n][Subscript[x, i]]]*Integrate[\[Omega][x]*Divide[Subscript[p,n][x], x-Subscript[x,i]], {x, a, b}]" |
---|
|
---|
|
---|
positions | |
---|
includes | "a" |
"b" |
"w_{i}" |
"p_n(x)" |
"p_{k}(x)" |
"p_{n}" |
"x_{i}" |
"\omega(x)" |
"p_{n}(x)" |
"\omega" |
"x_i" |
"a_{n}" |
"P_{n}" |
"w_i" |
"r(x_{i})" |
"i" |
"n" |
"x" |
"P_{n}(x)" |
"\frac{p_{n}(x)}{x-x_{i}}" |
"p'_{n}(x_{i})" |
"p_{n}(x_{i})" |
"x_{j}" |
"p_r" |
"p_s" |
"\mathbf{e}_n" |
"x_j" |
"1" |
|
---|
isPartOf | |
---|
definiens | |
definition | "integral expression for the weight" |
---|
score | 2 |
---|
|
definition | "integrand" |
---|
score | 1 |
---|
|
definition | "L'Hôpital 's rule" |
---|
score | 0 |
---|
|
|
definition | "polynomial of degree" |
---|
score | 0 |
---|
|
|
---|
|
|
---|
|
id | 9 |
---|
pid | 59 |
---|
eid | "math.59.52" |
---|
title | "Lambert W function" |
---|
formulae | id | "FORMULA_fe13643d8449f601f150fd50c0751cf2" |
---|
formula | "\begin{align}x & =ue^u, \\[5pt]\frac{dx}{du} & =(u+1)e^u.\end{align}" |
---|
semanticFormula | "\begin{align}x & =\LambertW@{x}\expe^{\LambertW@{x}}, \\ \deriv{x}{\LambertW@{x}} &=(\LambertW@{x} + 1) \expe^{\LambertW@{x}} .\end{align}" |
---|
confidence | 0 |
---|
translations | Mathematica | translation | "x == ProductLog[x]*(E)^(ProductLog[x])
D[x,ProductLog[x]] = (ProductLog[x] + 1)*Exp[ProductLog[x]]" |
---|
translationInformation | subEquations | "x = ProductLog[x]*(E)^(ProductLog[x])" |
"D[x,ProductLog[x]] = (ProductLog[x] + 1)*Exp[ProductLog[x]]" |
|
---|
freeVariables | |
---|
constraints | |
---|
tokenTranslations | \expe | "Recognizes e with power as the exponential function. It was translated as a function." |
---|
|
---|
|
---|
|
---|
Maple | translation | "x = LambertW(x)*exp(u); diff(x, [LambertW(x)$1]) = (LambertW(x) + 1)*exp(LambertW(x))" |
---|
translationInformation | subEquations | "x = LambertW(x)*exp(u)" |
"diff(x, [LambertW(x)$1]) = (LambertW(x) + 1)*exp(LambertW(x))" |
|
---|
freeVariables | |
---|
constraints | |
---|
tokenTranslations | \expe | "Recognizes e with power as the exponential function. It was translated as a function." |
---|
|
---|
|
---|
|
---|
|
---|
positions | |
---|
includes | |
---|
isPartOf | |
---|
definiens | definition | "substitution" |
---|
score | 2 |
---|
|
definition | "third identity" |
---|
score | 0 |
---|
|
definition | "second identity" |
---|
score | 1 |
---|
|
|
---|
|
|
---|
|
id | 10 |
---|
pid | 60 |
---|
eid | "math.60.57" |
---|
title | "Legendre polynomials" |
---|
formulae | id | "FORMULA_8646bd0d06e9454aaa39dfc506fe54f7" |
---|
formula | "\frac{1}{\left| \mathbf{x}-\mathbf{x}' \right|} = \frac{1}{\sqrt{r^2+{r'}^2-2r{r'}\cos\gamma}} = \sum_{\ell=0}^\infty \frac{{r'}^\ell}{r^{\ell+1}} P_\ell(\cos \gamma)" |
---|
semanticFormula | "\frac{1}{|\mathbf{x} - \mathbf{x} '|} = \frac{1}{\sqrt{r^2+{r'}^2-2r{r'}\cos\gamma}} = \sum_{\ell=0}^\infty \frac{{r'}^\ell}{r^{\ell+1}} \LegendrepolyP{\ell}@{\cos \gamma}" |
---|
confidence | 0.808438593520797 |
---|
translations | Mathematica | "Divide[1, Abs[x - x\[Prime]]] == Divide[1, Sqrt[r^2+(r\[Prime])^(2)-2*r*r\[Prime] Cos[\[Gamma]]]] == Sum[Divide[(r\[Prime])^(\[ScriptL]), r^(\[ScriptL]+1)]*LegendreP[\[ScriptL], Cos[\[Gamma]]], {\[ScriptL], 0, Infinity}]" |
---|
|
---|
positions | |
---|
includes | "P_n(x)" |
"P_n" |
"P_n(\cos\theta)" |
"P_{n}(x)" |
"P_m" |
"r" |
"r{'}" |
"\mathbf{x}" |
"\mathbf{x}{'}" |
"\gamma" |
"P" |
|
---|
isPartOf | |
---|
definiens | definition | "expansion" |
---|
score | 2 |
---|
|
definition | "Adrien-Marie Legendre as the coefficient" |
---|
score | 0 |
---|
|
|
definition | "Legendre polynomial" |
---|
score | 2 |
---|
|
definition | "length of the vector" |
---|
score | 1 |
---|
|
|
definition | "polynomial" |
---|
score | 1 |
---|
|
|
---|
|
|
---|
|
id | 11 |
---|
pid | 61 |
---|
eid | "math.61.27" |
---|
title | "Error function" |
---|
formulae | id | "FORMULA_523ec091d0929f0fa69ae7e0d563a72b" |
---|
formula | "\operatorname{erf}^{(k)}(z) = \frac{2 (-1)^{k-1}}{\sqrt{\pi}} \mathit{H}_{k-1}(z) e^{-z^2} = \frac{2}{\sqrt{\pi}} \frac{d^{k-1}}{dz^{k-1}} \left(e^{-z^2}\right),\qquad k=1, 2, \dots" |
---|
semanticFormula | "\erf@@{(z)}^{(k)} = \frac{2 (-1)^{k-1}}{\sqrt{\cpi}} \HermitepolyH{k-1}@{z} \expe^{-z^2} = \frac{2}{\sqrt{\cpi}} \deriv [{k-1}]{ }{z}(\expe^{-z^2}) , \qquad k = 1 , 2 , \dots" |
---|
confidence | 0.82607945540953 |
---|
translations | Mathematica | translation | "D[Erf[z], {z, k}] == Divide[2*(- 1)^(k - 1),Sqrt[Pi]]*HermiteH[k - 1, z]*Exp[- (z)^(2)] == Divide[2,Sqrt[Pi]]*D[Exp[- (z)^(2)], {z, k - 1}]" |
---|
translationInformation | subEquations | "D[Erf[z], {z, k}] = Divide[2*(- 1)^(k - 1),Sqrt[Pi]]*HermiteH[k - 1, z]*Exp[- (z)^(2)]" |
"Divide[2*(- 1)^(k - 1),Sqrt[Pi]]*HermiteH[k - 1, z]*Exp[- (z)^(2)] = Divide[2,Sqrt[Pi]]*D[Exp[- (z)^(2)], {z, k - 1}]" |
|
---|
freeVariables | |
---|
constraints | "k == 1 , 2 , \[Ellipsis]" |
|
---|
tokenTranslations | \deriv1 | "Derivative; Example: \deriv[n]{f}{x}
Will be translated to: D[$1, {$2, $0}]
Relevant links to definitions:
DLMF: http://dlmf.nist.gov/1.4#E4
Mathematica: https://" |
---|
\cpi | "Pi was translated to: Pi" |
---|
\HermitepolyH | "Hermite polynomial; Example: \HermitepolyH{n}@{x}
Will be translated to: HermiteH[$0, $1]
Relevant links to definitions:
DLMF: http://dlmf.nist.gov/18.3#T1.t1.r13
Mathematica: https://" |
---|
\expe | "Recognizes e with power as the exponential function. It was translated as a function." |
---|
\erf | "Error function; Example: \erf@@{z}
Will be translated to: Erf[$0]
Relevant links to definitions:
DLMF: http://dlmf.nist.gov/7.2#E1
Mathematica: https://reference.wolfram.com/language/ref/Erf.html" |
---|
|
---|
|
---|
|
---|
Maple | translation | "diff(erf(z), [z$k]) = (2*(- 1)^(k - 1))/(sqrt(Pi))*HermiteH(k - 1, z)*exp(- (z)^(2)) = (2)/(sqrt(Pi))*diff(exp(- (z)^(2)), [z$(k - 1)])" |
---|
translationInformation | subEquations | "diff(erf(z), [z$k]) = (2*(- 1)^(k - 1))/(sqrt(Pi))*HermiteH(k - 1, z)*exp(- (z)^(2))" |
"(2*(- 1)^(k - 1))/(sqrt(Pi))*HermiteH(k - 1, z)*exp(- (z)^(2)) = (2)/(sqrt(Pi))*diff(exp(- (z)^(2)), [z$(k - 1)])" |
|
---|
freeVariables | |
---|
constraints | |
---|
tokenTranslations | \deriv1 | "Derivative; Example: \deriv[n]{f}{x}
Will be translated to: diff($1, [$2$($0)])
Relevant links to definitions:
DLMF: http://dlmf.nist.gov/1.4#E4
Maple: https://www.maplesoft.com/support/help/Maple/view.aspx?path=diff" |
---|
\cpi | "Pi was translated to: Pi" |
---|
\HermitepolyH | "Hermite polynomial; Example: \HermitepolyH{n}@{x}
Will be translated to: HermiteH($0, $1)
Relevant links to definitions:
DLMF: http://dlmf.nist.gov/18.3#T1.t1.r13
Maple: https://www.maplesoft.com/support/help/maple/view.aspx?path=HermiteH" |
---|
\expe | "Recognizes e with power as the exponential function. It was translated as a function." |
---|
\erf | "Error function; Example: \erf@@{z}
Will be translated to: erf($0)
Relevant links to definitions:
DLMF: http://dlmf.nist.gov/7.2#E1
Maple: https://www.maplesoft.com/support/help/maple/view.aspx?path=erf" |
---|
|
---|
|
---|
|
---|
|
---|
positions | |
---|
includes | "erf" |
"e^{-t^2}" |
"-1" |
"z" |
"z)" |
"e" |
"\mathit{H}" |
"z^{\bar{n}}" |
|
---|
isPartOf | |
---|
definiens | definition | "Higher order derivative" |
---|
score | 2 |
---|
|
definition | "physicists ' Hermite polynomial" |
---|
score | 1 |
---|
|
definition | "name error function" |
---|
score | 1 |
---|
|
|
definition | "error function" |
---|
score | 2 |
---|
|
|
|
---|
|
|
---|
|
id | 12 |
---|
pid | 62 |
---|
eid | "math.62.44" |
---|
title | "Chebyshev polynomials" |
---|
formulae | id | "FORMULA_d9eb68704833b0f525c4ca81a749d9ca" |
---|
formula | "x_k = \cos\left(\frac{\pi(k+1/2)}{n}\right),\quad k=0,\ldots,n-1" |
---|
semanticFormula | "x_k = \cos(\frac{\cpi(k + 1 / 2)}{n}) , \quad k = 0 , \ldots , n - 1" |
---|
confidence | 0 |
---|
translations | Mathematica | translation | "Subscript[x, k] == Cos[Divide[Pi*(k + 1/2),n]]" |
---|
translationInformation | subEquations | "Subscript[x, k] = Cos[Divide[Pi*(k + 1/2),n]]" |
|
---|
freeVariables | "Subscript[x, k]" |
"k" |
"n" |
|
---|
constraints | "k == 0 , \[Ellipsis], n - 1" |
|
---|
tokenTranslations | \cos | "Cosine; Example: \cos@@{z}
Will be translated to: Cos[$0]
Relevant links to definitions:
DLMF: http://dlmf.nist.gov/4.14#E2
Mathematica: https://reference.wolfram.com/language/ref/Cos.html" |
---|
\cpi | "Pi was translated to: Pi" |
---|
|
---|
|
---|
|
---|
Maple | translation | "x[k] = cos((Pi*(k + 1/2))/(n))" |
---|
translationInformation | subEquations | "x[k] = cos((Pi*(k + 1/2))/(n))" |
|
---|
freeVariables | |
---|
constraints | |
---|
tokenTranslations | \cos | "Cosine; Example: \cos@@{z}
Will be translated to: cos($0)
Relevant links to definitions:
DLMF: http://dlmf.nist.gov/4.14#E2
Maple: https://www.maplesoft.com/support/help/maple/view.aspx?path=cos" |
---|
\cpi | "Pi was translated to: Pi" |
---|
|
---|
|
---|
|
---|
|
---|
positions | |
---|
includes | "n" |
"x" |
"n x" |
"-1" |
"k = 0" |
"x_{k}" |
|
---|
isPartOf | |
---|
definiens | |
|
definition | "trigonometric definition" |
---|
score | 0 |
---|
|
|
definition | "different simple root" |
---|
score | 1 |
---|
|
definition | "Chebyshev polynomial of the first kind" |
---|
score | 1 |
---|
|
definition | "Chebyshev polynomial" |
---|
score | 1 |
---|
|
|
---|
|
|
---|
|
id | 13 |
---|
pid | 63 |
---|
eid | "math.63.109" |
---|
title | "Hermite polynomials" |
---|
formulae | id | "FORMULA_249043719eb4dd70350b460363255e11" |
---|
formula | "E(x, y; u) := \sum_{n=0}^\infty u^n \, \psi_n (x) \, \psi_n (y) = \frac{1}{\sqrt{\pi (1 - u^2)}} \, \exp\left(-\frac{1 - u}{1 + u} \, \frac{(x + y)^2}{4} - \frac{1 + u}{1 - u} \, \frac{(x - y)^2}{4}\right)" |
---|
semanticFormula | "E(x , y ; u) : = \sum_{n=0}^\infty u^n \psi_n(x) \psi_n(y) = \frac{1}{\sqrt{\cpi(1 - u^2)}} \exp(- \frac{1 - u}{1 + u} \frac{(x + y)^2}{4} - \frac{1 + u}{1 - u} \frac{(x - y)^2}{4})" |
---|
confidence | 0 |
---|
translations | Mathematica | translation | "\[CapitalEpsilon][x_, y_, u_] := Sum[(u)^(n)* Subscript[\[Psi], n][x]* Subscript[\[Psi], n][y], {n, 0, Infinity}, GenerateConditions->None] == Divide[1,Sqrt[Pi*(1 - (u)^(2))]]*Exp[-Divide[1 - u,1 + u]*Divide[(x + y)^(2),4]-Divide[1 + u,1 - u]*Divide[(x - y)^(2),4]]" |
---|
|
---|
Maple | translation | "Epsilon := (x, y, u) -> sum((u)^(n)* psi[n](x)* psi[n](y), n = 0..infinity) = (1)/(sqrt(Pi*(1 - (u)^(2))))*exp(-(1 - u)/(1 + u)*((x + y)^(2))/(4)-(1 + u)/(1 - u)*((x - y)^(2))/(4))" |
---|
|
---|
|
---|
positions | |
---|
includes | "u" |
"\psi_{n}" |
"H_{n}(x)" |
"\psi_{n}(x)" |
"x^{n}" |
"n" |
"x" |
"H_{n}" |
"He_{n}(x)" |
"He_{n}" |
"D_{n}(z)" |
"E(x,y;u)" |
"H_{n}(y)" |
|
---|
isPartOf | |
---|
definiens | definition | "distributional identity" |
---|
score | 1 |
---|
|
definition | "separable kernel" |
---|
score | 1 |
---|
|
definition | "Mehler 's formula" |
---|
score | 2 |
---|
|
definition | "Hermite polynomial" |
---|
score | 1 |
---|
|
definition | "Hermite function" |
---|
score | 2 |
---|
|
definition | "Hermite" |
---|
score | 1 |
---|
|
definition | "bivariate Gaussian probability density" |
---|
score | 1 |
---|
|
definition | "Gaussian probability density" |
---|
score | 1 |
---|
|
definition | "Gaussian probability" |
---|
score | 1 |
---|
|
|
---|
|
|
---|
|
id | 14 |
---|
pid | 64 |
---|
eid | "math.64.8" |
---|
title | "Legendre function" |
---|
formulae | id | "FORMULA_06f9b7b1d3f141742ad1c582b55056ba" |
---|
formula | "x = \pm 1" |
---|
semanticFormula | "x = \pm 1" |
---|
confidence | 0 |
---|
translations | Mathematica | translation | "x == \[PlusMinus]1" |
---|
translationInformation | subEquations | |
---|
freeVariables | |
---|
constraints | |
---|
tokenTranslations | \pm | "was translated to: \[PlusMinus]" |
---|
|
---|
|
---|
|
---|
Maple | translation | "x = &+- 1" |
---|
translationInformation | subEquations | |
---|
freeVariables | |
---|
constraints | |
---|
tokenTranslations | \pm | "was translated to: &+-" |
---|
|
---|
|
---|
|
---|
|
---|
positions | |
---|
includes | |
---|
isPartOf | |
---|
definiens | |
---|
|
|
---|
|
id | 15 |
---|
pid | 65 |
---|
eid | "math.65.27" |
---|
title | "Bernoulli polynomials" |
---|
formulae | id | "FORMULA_a7fcf738c676932d58f39ff9f7df22ae" |
---|
formula | "E_n=2^nE_n(\tfrac{1}{2})" |
---|
semanticFormula | "\EulernumberE{n} = 2^n\EulerpolyE{n}@{\tfrac{1}{2}}" |
---|
confidence | 0.8953028732079359 |
---|
translations | Mathematica | translation | "EulerE[n] == (2)^(n)* EulerE[n, Divide[1,2]]" |
---|
|
---|
Maple | translation | "euler(n) = (2)^(n)* euler(n, (1)/(2))" |
---|
|
---|
|
---|
positions | |
---|
includes | |
---|
isPartOf | |
---|
definiens | definition | "Euler number" |
---|
score | 2 |
---|
|
|
---|
|
|
---|
|
id | 16 |
---|
pid | 66 |
---|
eid | "math.66.8" |
---|
title | "Trigonometric integral" |
---|
formulae | id | "FORMULA_0feb8031b89a9707b164163ec50265f0" |
---|
formula | "\operatorname{Si}(ix) = i\operatorname{Shi}(x)" |
---|
semanticFormula | "\sinint@{\iunit x} = \iunit \sinhint@{x}" |
---|
confidence | 0.8811682126384021 |
---|
translations | Mathematica | translation | "SinIntegral[I*x] == I*SinhIntegral[x]" |
---|
translationInformation | subEquations | "SinIntegral[I*x] == I*SinhIntegral[x]" |
|
---|
freeVariables | |
---|
constraints | |
---|
tokenTranslations | Shi | "Was interpreted as a function call because of a leading \operatorname." |
---|
\iunit | "Imaginary unit was translated to: I" |
---|
\sinint | "Sine integral; Example: \sinint@{z}
Will be translated to: SinIntegral[$0]
Relevant links to definitions:
DLMF: http://dlmf.nist.gov/6.2#E9
Mathematica: https://reference.wolfram.com/language/ref/SinIntegral.html" |
---|
|
---|
|
---|
|
---|
Maple | translation | "Si(I*x) = I*Shi(x)" |
---|
translationInformation | subEquations | |
---|
freeVariables | |
---|
constraints | |
---|
tokenTranslations | Shi | "Was interpreted as a function call because of a leading \operatorname." |
---|
\iunit | "Imaginary unit was translated to: I" |
---|
\sinint | "Sine integral; Example: \sinint@{z}
Will be translated to: Si($0)
Relevant links to definitions:
DLMF: http://dlmf.nist.gov/6.2#E9
Maple: https://www.maplesoft.com/support/help/maple/view.aspx?path=Si" |
---|
|
---|
|
---|
|
---|
|
---|
positions | |
---|
includes | |
---|
isPartOf | |
---|
definiens | definition | "ordinary sine" |
---|
score | 1 |
---|
|
definition | "Trigonometric integral" |
---|
score | 2 |
---|
|
definition | "hyperbolic sine integral" |
---|
score | 2 |
---|
|
|
---|
|
|
---|
|
id | 17 |
---|
pid | 67 |
---|
eid | "math.67.29" |
---|
title | "Beta function" |
---|
formulae | id | "FORMULA_5f59825d73d63a9990498edca7222261" |
---|
formula | "f(z)=\frac{1}{\Beta(x,y)}" |
---|
semanticFormula | "f(x, y) = \frac{1}{\EulerBeta@{x}{y}}" |
---|
confidence | 0.8953028732079359 |
---|
translations | Mathematica | translation | "f[x_, y_] := Divide[1,Beta[x, y]]" |
---|
|
---|
Maple | translation | "f := (x,y) -> (1)/(Beta(x, y))" |
---|
|
---|
|
---|
positions | |
---|
includes | |
---|
isPartOf | |
---|
definiens | definition | "function about the form" |
---|
score | 0 |
---|
|
definition | "reciprocal beta function" |
---|
score | 2 |
---|
|
definition | "definite integral of trigonometric function" |
---|
score | 1 |
---|
|
definition | "integral representation" |
---|
score | 0 |
---|
|
definition | "product" |
---|
score | 0 |
---|
|
|
definition | "multiple-angle" |
---|
score | 0 |
---|
|
definition | "beta function" |
---|
score | 2 |
---|
|
|
---|
|
|
---|
|
id | 18 |
---|
pid | 68 |
---|
eid | "math.68.51" |
---|
title | "Fresnel integral" |
---|
formulae | id | "FORMULA_b7dae135f3b04317078f86b595fe7dae" |
---|
formula | "\begin{align}\int x^m e^{ix^n}\,dx & =\frac{x^{m+1}}{m+1}\,_1F_1\left(\begin{array}{c} \frac{m+1}{n}\\1+\frac{m+1}{n}\end{array}\mid ix^n\right) \\[6px]& =\frac{1}{n} i^\frac{m+1}{n}\gamma\left(\frac{m+1}{n},-ix^n\right),\end{align}" |
---|
semanticFormula | "\begin{align}\int x^m \exp(\iunit x^n) \diff{x} &= \frac{x^{m+1}}{m+1}\genhyperF{1}{1}@{\frac{m+1}{n}}{1+\frac{m+1}{n}}{\iunit x^n}\\ &=\frac{1}{n} \iunit^{(m+1)/n} \incgamma@{\frac{m+1}{n}}{-\iunit x^n}\end{align}" |
---|
confidence | 0.869061849326977 |
---|
translations | Mathematica | translation | "Integrate[(x)^(m)* Exp[I*(x)^(n)], x, GenerateConditions->None] == Divide[(x)^(m + 1),m + 1]*HypergeometricPFQ[{Divide[m + 1,n]}, {1 +Divide[m + 1,n]}, I*(x)^(n)] == Divide[1,n]*(I)^((m + 1)/n)* Gamma[Divide[m + 1,n], 0, - I*(x)^(n)]" |
---|
|
---|
Maple | translation | "int((x)^(m)* exp(I*(x)^(n)), x) = ((x)^(m + 1))/(m + 1)*hypergeom([(m + 1)/(n)], [1 +(m + 1)/(n)], I*(x)^(n)) = (1)/(n)*(I)^((m + 1)/n)* GAMMA((m + 1)/(n))-GAMMA((m + 1)/(n), - I*(x)^(n))" |
---|
|
---|
|
---|
positions | |
---|
includes | |
---|
isPartOf | |
---|
definiens | definition | "incomplete gamma function" |
---|
score | 2 |
---|
|
definition | "confluent hypergeometric function" |
---|
score | 2 |
---|
|
definition | "Fresnel integral" |
---|
score | 1 |
---|
|
definition | "imaginary part" |
---|
score | 1 |
---|
|
|
---|
|
|
---|
|
id | 19 |
---|
pid | 69 |
---|
eid | "math.69.117" |
---|
title | "Classical orthogonal polynomials" |
---|
formulae | id | "FORMULA_725c6b6b645d425d3b385ac2c002da77" |
---|
formula | "T_n(x) = \frac{\Gamma(1/2)\sqrt{1-x^2}}{(-2)^n\,\Gamma(n+1/2)} \ \frac{d^n}{dx^n}\left([1-x^2]^{n-1/2}\right)" |
---|
semanticFormula | "\ChebyshevpolyT{n}@{x} = \frac{\EulerGamma{1/2}\sqrt{1-x^2}}{(-2)^n\EulerGamma{n+1/2}} \deriv [n]{ }{x}([1 - x^2]^{n-1/2})" |
---|
confidence | 0 |
---|
translations | Mathematica | translation | "ChebyshevT[n, x] == Divide[Gamma[1/2]*Sqrt[1 - (x)^(2)],(- 2)^(n)* Gamma[n + 1/2]]*D[(1 - (x)^(2))^(n - 1/2), {x, n}]" |
---|
|
---|
Maple | translation | "ChebyshevT(n, x) = (GAMMA(1/2)*sqrt(1 - (x)^(2)))/((- 2)^(n)* GAMMA(n + 1/2))*diff((1 - (x)^(2))^(n - 1/2), [x$(n)])" |
---|
|
---|
|
---|
positions | |
---|
includes | "\ L_n" |
"H_n" |
"P_{n}" |
"n-r" |
"n" |
"P_{n}(x)" |
"-1/2" |
"e_{n}" |
"P_n" |
"\lambda_{n}" |
"-1" |
"+1" |
"U_n" |
|
---|
isPartOf | |
---|
definiens | definition | "Rodrigues ' formula" |
---|
score | 2 |
---|
|
definition | "orthogonal polynomial" |
---|
score | 1 |
---|
|
definition | "Chebyshev polynomials of the second kind" |
---|
score | 1 |
---|
|
definition | "classical orthogonal polynomial" |
---|
score | 1 |
---|
|
definition | "Chebyshev polynomial" |
---|
score | 2 |
---|
|
definition | "Gamma function" |
---|
score | 2 |
---|
|
|
---|
|
|
---|
|
id | 20 |
---|
pid | 70 |
---|
eid | "math.70.58" |
---|
title | "Generalized hypergeometric function" |
---|
formulae | id | "FORMULA_699b5f465d21dd6af7212cd8414f60c6" |
---|
formula | "{}_1F_0(1;;z) = \sum_{n \geqslant 0} z^n = (1-z)^{-1}" |
---|
semanticFormula | "\genhyperF{1}{0}@{1}{}{z} = \sum_{n \geqslant 0} z^n = (1-z)^{-1}" |
---|
confidence | 0 |
---|
translations | Mathematica | translation | "HypergeometricPFQ[{1}, {}, z] == Sum[(z)^(n), {n, 0, Infinity}, GenerateConditions->None] == (1 - z)^(- 1)" |
---|
|
---|
Maple | translation | "hypergeom([1], [], z) = sum((z)^(n), n = 0..infinity) = (1 - z)^(- 1)" |
---|
|
---|
|
---|
positions | |
---|
includes | "z" |
"n" |
"z)" |
"_{p}F_{q}" |
"^{n}" |
|
---|
isPartOf | |
---|
definiens | definition | "geometric series with ratio" |
---|
score | 2 |
---|
|
definition | "coefficient" |
---|
score | 0 |
---|
|
definition | "hypergeometric function" |
---|
score | 2 |
---|
|
|
---|
|
|
---|
|
id | 21 |
---|
pid | 71 |
---|
eid | "math.71.1-1" |
---|
title | "Dirichlet L-function" |
---|
formulae | id | "FORMULA_dcb9beab8f504cfc907c3165d24e5ad3" |
---|
formula | "\chi(-1) = 1" |
---|
semanticFormula | "\Dirichletchar@@{- 1}{k} = 1" |
---|
confidence | 0.746792096089683 |
---|
translations | Mathematica | translation | "DirichletCharacter[1, 1, -1] == 1" |
---|
|
---|
|
---|
positions | |
---|
includes | |
---|
isPartOf | "a=\begin{cases}0;&\mbox{if }\chi(-1)=1, \\ 1;&\mbox{if }\chi(-1)=-1,\end{cases}" |
|
---|
definiens | definition | "primitive character" |
---|
score | 2 |
---|
|
definition | "integer" |
---|
score | 1 |
---|
|
definition | "only zero" |
---|
score | 0 |
---|
|
definition | "Gamma function" |
---|
score | 0 |
---|
|
|
definition | "functional equation" |
---|
score | 0 |
---|
|
definition | "Gauss sum" |
---|
score | 0 |
---|
|
definition | "Dirichlet character" |
---|
score | 2 |
---|
|
|
---|
|
|
---|
|
id | 22 |
---|
pid | 72 |
---|
eid | "math.72.15" |
---|
title | "Airy function" |
---|
formulae | id | "FORMULA_3b2520d05d324290456841271e8d565b" |
---|
formula | "\operatorname{Bi}'(z)\sim \frac{z^{\frac{1}{4}}e^{\frac{2}{3}z^{\frac{3}{2}}}}{\sqrt\pi\,}\left[ \sum_{n=0}^{\infty}\frac{1+6n}{1-6n} \dfrac{ \Gamma(n+\frac{5}{6})\Gamma(n+\frac{1}{6})\left(\frac{3}{4}\right)^n}{2\pi n! z^{3n/2}} \right]" |
---|
semanticFormula | "\AiryBi'@{z} \sim \frac{z^{\frac{1}{4}} \expe^{\frac{2}{3}z^{\frac{3}{2}}}}{\sqrt{\cpi}} [\sum_{n=0}^{\infty} \frac{1+6n}{1-6n} \frac{\EulerGamma@{n + \frac{5}{6}} \EulerGamma@{n + \frac{1}{6}}(\frac{3}{4})^n{2 \cpi n! z^{3n/2}}}]" |
---|
confidence | 0.6525418663370697 |
---|
translations | |
---|
positions | |
---|
includes | |
---|
isPartOf | |
---|
definiens | |
definition | "asymptotic formula for Ai" |
---|
score | 1 |
---|
|
|
definition | "asymptotic behaviour of the Airy function" |
---|
score | 1 |
---|
|
|
|
definition | "definition of the Airy function" |
---|
score | 1 |
---|
|
definition | "Airy function" |
---|
score | 2 |
---|
|
definition | "Gamma function" |
---|
score | 2 |
---|
|
|
---|
|
|
---|
|
id | 23 |
---|
pid | 73 |
---|
eid | "math.73.41" |
---|
title | "Dawson function" |
---|
formulae | id | "FORMULA_f6b555bd8ce626d90119ab5eafdaeff2" |
---|
formula | "F'(y)=1-2yF(y)" |
---|
semanticFormula | "\DawsonsintF'@{y}=1-2y\DawsonsintF@{y}" |
---|
confidence | 0 |
---|
translations | Mathematica | translation | "D[DawsonF[y], {y, 1}] == 1 - 2*y*DawsonF[y]" |
---|
|
---|
Maple | translation | "diff( dawson(y), y$(1) ) = 1 - 2*y*dawson(y)" |
---|
|
---|
|
---|
positions | |
---|
includes | |
---|
isPartOf | |
---|
definiens | definition | "polynomial" |
---|
score | 0 |
---|
|
definition | "Dawson function" |
---|
score | 2 |
---|
|
|
---|
|
|
---|
|
id | 24 |
---|
pid | 74 |
---|
eid | "math.74.0-1" |
---|
title | "Hurwitz zeta function" |
---|
formulae | id | "FORMULA_80a3608d4c2aae63f082861007c16c38" |
---|
formula | "s\not =1" |
---|
semanticFormula | "s \neq 1" |
---|
confidence | 0 |
---|
translations | Mathematica | translation | "s \[NotEqual] 1" |
---|
|
---|
|
---|
positions | |
---|
includes | |
---|
isPartOf | |
---|
definiens | |
---|
|
|
---|
|
id | 25 |
---|
pid | 75 |
---|
eid | "math.75.6-1" |
---|
title | "Theta function" |
---|
formulae | id | "FORMULA_bfba6c35dbbcd8b89c6a29b1ffd6f517" |
---|
formula | "q = e^{i\pi\tau}" |
---|
semanticFormula | "q = \expe^{\iunit \cpi \tau}" |
---|
confidence | 0 |
---|
translations | Mathematica | translation | "q == Exp[I*Pi*\[Tau]]" |
---|
|
---|
Maple | translation | "q = exp(I*Pi*tau)" |
---|
|
---|
|
---|
positions | |
---|
includes | "\tau" |
"q" |
"w = e^{\pi iz}" |
"q = e^{\pi i\tau}" |
|
---|
isPartOf | "q = e^{\pi i\tau}" |
"q = e^{2\pi i\tau}" |
"\theta_F (z)= \sum_{m\in \Z^n} e^{2\pi izF(m)}" |
"\hat{\theta}_F (z) = \sum_{k=0}^\infty R_F(k) e^{2\pi ikz}" |
|
---|
definiens | definition | "term of the nome" |
---|
score | 2 |
---|
|
|
|
---|
|
|
---|
|
id | 26 |
---|
pid | 76 |
---|
eid | "math.76.155" |
---|
title | "Jacobi elliptic functions" |
---|
formulae | id | "FORMULA_b54c03865b3efa9ea9112567cd66f59d" |
---|
formula | "\frac{\mathrm{d}}{\mathrm{d}z} \operatorname{dn}(z) = - k^2 \operatorname{sn}(z) \operatorname{cn}(z)" |
---|
semanticFormula | "\deriv [1]{ }{z} \Jacobielldnk@@{(z)}{k} = - k^2 \Jacobiellsnk@@{(z)}{k} \Jacobiellcnk@@{(z)}{k}" |
---|
confidence | 0.6954186066124032 |
---|
translations | Mathematica | translation | "D[JacobiDN[z, (k)^2], {z, 1}] == - (k)^(2)* JacobiSN[z, (k)^2]*JacobiCN[z, (k)^2]" |
---|
|
---|
Maple | translation | "diff(JacobiDN(z, k), [z$(1)]) = - (k)^(2)* JacobiSN(z, k)*JacobiCN(z, k)" |
---|
|
---|
|
---|
positions | |
---|
includes | |
---|
isPartOf | |
---|
definiens | definition | "derivative" |
---|
score | 2 |
---|
|
definition | "elliptic function" |
---|
score | 2 |
---|
|
definition | "basic Jacobi" |
---|
score | 0 |
---|
|
|
|
|
|
---|
|
|
---|
|
id | 27 |
---|
pid | 77 |
---|
eid | "math.77.118" |
---|
title | "Incomplete gamma function" |
---|
formulae | id | "FORMULA_c82b4ceebacd2b4a03b2eff406834e61" |
---|
formula | "\int_{-\infty}^\infty \frac {\gamma\left(\frac s 2, z^2 \pi \right)} {(z^2 \pi)^\frac s 2} e^{-2 \pi i k z} \mathrm d z = \frac {\Gamma\left(\frac {1-s} 2, k^2 \pi \right)} {(k^2 \pi)^\frac {1-s} 2}" |
---|
semanticFormula | "\int_{-\infty}^\infty \frac{\incgamma@{\frac s 2}{z^2 \cpi}}{(z^2 \cpi)^\frac s 2} \expe^{- 2 \cpi \iunit k z} \diff{z} = \frac{\incGamma@{\frac {1-s} 2}{k^2 \cpi}}{(k^2 \cpi)^\frac {1-s} 2}}" |
---|
confidence | 0.8121295595054496 |
---|
translations | Mathematica | translation | "Integrate[Divide[Gamma[Divide[s,2], 0, (z)^(2)* Pi],((z)^(2)* Pi)^(Divide[s,2])]*Exp[- 2*Pi*I*k*z], {z, - Infinity, Infinity}, GenerateConditions->None] == Divide[Gamma[Divide[1 - s,2], (k)^(2)* Pi],((k)^(2)* Pi)^(Divide[1 - s,2])]" |
---|
|
---|
Maple | translation | "int((GAMMA((s)/(2))-GAMMA((s)/(2), (z)^(2)* Pi))/(((z)^(2)* Pi)^((s)/(2)))*exp(- 2*Pi*I*k*z), z = - infinity..infinity) = (GAMMA((1 - s)/(2), (k)^(2)* Pi))/(((k)^(2)* Pi)^((1 - s)/(2)))" |
---|
|
---|
|
---|
positions | |
---|
includes | "\gamma(s, z)" |
"\gamma" |
"z^s" |
"\Gamma" |
"\gamma(s,z)" |
"k" |
"z" |
"z=" |
"2\pi" |
"\gamma(u,v)" |
"\gamma(s,x)" |
"s" |
"z^{s}" |
"e^{-x}" |
"\gamma(a,x)" |
|
---|
isPartOf | |
---|
definiens | definition | "Fourier" |
---|
score | 1 |
---|
|
definition | "upper incomplete Gamma function" |
---|
score | 2 |
---|
|
definition | "lower incomplete Gamma function" |
---|
score | 2 |
---|
|
|
---|
|
|
---|
|
id | 28 |
---|
pid | 78 |
---|
eid | "math.78.0-1" |
---|
title | "Polylogarithm" |
---|
formulae | id | "FORMULA_e939f30d07578c2fb0d8cb5201db3c79" |
---|
formula | "_{1}(z) =" |
---|
semanticFormula | "\polylog{1}@{z} = -\ln@{1-z}" |
---|
confidence | 0 |
---|
translations | Mathematica | translation | "PolyLog[1, z] = -Log[1 - z]" |
---|
|
---|
Maple | translation | "polylog(1, z) = -ln(1 - z)" |
---|
|
---|
|
---|
positions | |
---|
includes | "_{1}" |
"z" |
"z) =" |
"z)" |
"1" |
|
---|
isPartOf | "\operatorname{Li}_{1}(z) = -\ln(1-z)" |
"\operatorname{Ti}_0(z) = {z \over 1+z^2}, \quad \operatorname{Ti}_1(z) = \arctan z, \quad \operatorname{Ti}_2(z) = \int_0^z {\arctan t \over t} dt, \quad \ldots\quad \operatorname{Ti}_{n+1}(z) = \int_0^z \frac{\operatorname{Ti}_n(t)}{t} dt" |
|
---|
definiens | definition | "natural logarithm" |
---|
score | 2 |
---|
|
definition | "logarithm" |
---|
score | 2 |
---|
|
definition | "polylogarithm function" |
---|
score | 2 |
---|
|
definition | "dilogarithm" |
---|
score | 1 |
---|
|
definition | "trilogarithm" |
---|
score | 1 |
---|
|
|
---|
|
|
---|
|
id | 29 |
---|
pid | 79 |
---|
eid | "math.79.11" |
---|
title | "Sinc function" |
---|
formulae | id | "FORMULA_6340f4a043f912a3557e084aaf03792a" |
---|
formula | "\int_{-\infty}^\infty \operatorname{sinc}(t) \, e^{-i 2 \pi f t}\,dt = \operatorname{rect}(f)" |
---|
semanticFormula | "\int_{-\infty}^\infty \operatorname{sinc}(t) \expe^{- \iunit 2 \cpi f t} \diff{t} = \operatorname{rect}(f)" |
---|
confidence | 0 |
---|
translations | Mathematica | translation | "Integrate[sinc[(t)]*Exp[- I*2*Pi*f*t], {t, - Infinity, Infinity}, GenerateConditions->None] == rect[f]" |
---|
|
---|
Maple | translation | "int(sinc((t))*exp(- I*2*Pi*f*t), t = - infinity..infinity) = rect(f)" |
---|
|
---|
|
---|
positions | |
---|
includes | |
---|
isPartOf | |
---|
definiens | definition | "argument" |
---|
score | 0 |
---|
|
definition | "continuous Fourier" |
---|
score | 2 |
---|
|
definition | "rectangular function" |
---|
score | 2 |
---|
|
|
definition | "ordinary frequency" |
---|
score | 1 |
---|
|
|
---|
|
|
---|
|
id | 30 |
---|
pid | 80 |
---|
eid | "math.80.26" |
---|
title | "Exponential integral" |
---|
formulae | id | "FORMULA_a9a738ef9d4e46360dd9b87b39c691bf" |
---|
formula | "N=1" |
---|
semanticFormula | "N=1" |
---|
confidence | 0 |
---|
translations | |
---|
positions | |
---|
includes | |
---|
isPartOf | |
---|
definiens | definition | "large value" |
---|
score | 2 |
---|
|
|
|
---|
|
|
---|
|
id | 31 |
---|
pid | 81 |
---|
eid | "math.81.84" |
---|
title | "Laguerre polynomials" |
---|
formulae | id | "FORMULA_f179a85d8102cbedb67cf60b188a68b7" |
---|
formula | "\sum_{n=0}^\infty \frac{n!\,\Gamma\left(\alpha + 1\right)}{\Gamma\left(n+\alpha+1\right)}L_n^{(\alpha)}(x)L_n^{(\alpha)}(y)t^n=\frac{1}{(1-t)^{\alpha + 1}}e^{-(x+y)t/(1-t)}\,_0F_1\left(;\alpha + 1;\frac{xyt}{(1-t)^2}\right)" |
---|
semanticFormula | "\sum_{n=0}^\infty \frac{n! \EulerGamma@{\alpha + 1}}{\EulerGamma@{n + \alpha + 1}} \LaguerrepolyL[\alpha]{n}@{x} \LaguerrepolyL[\alpha]{n}@{x} t^n = \frac{1}{(1-t)^{\alpha + 1}} \expe^{-(x+y)t/(1-t)} \genhyperF{0}{1}@{}{\alpha + 1}{\frac{xyt}{(1-t)^2}}" |
---|
confidence | 0.8953028732079359 |
---|
translations | Mathematica | translation | "Sum[Divide[(n)!*Gamma[\[Alpha]+ 1],Gamma[n + \[Alpha]+ 1]]*LaguerreL[n, \[Alpha], x]*LaguerreL[n, \[Alpha], x]*(t)^(n), {n, 0, Infinity}, GenerateConditions->None] == Divide[1,(1 - t)^(\[Alpha]+ 1)]*Exp[-(x + y)*t/(1 - t)]*HypergeometricPFQ[{}, {\[Alpha]+ 1}, Divide[x*y*t,(1 - t)^(2)]]" |
---|
|
---|
Maple | translation | "sum((factorial(n)*GAMMA(alpha + 1))/(GAMMA(n + alpha + 1))*LaguerreL(n, alpha, x)*LaguerreL(n, alpha, x)*(t)^(n), n = 0..infinity) = (1)/((1 - t)^(alpha + 1))*exp(-(x + y)*t/(1 - t))*hypergeom([], [alpha + 1], (x*y*t)/((1 - t)^(2)))" |
---|
|
---|
|
---|
positions | |
---|
includes | "\alpha" |
"L_{n}^{(\alpha)}" |
"L_n^{(\alpha)}(x)" |
"n" |
|
---|
isPartOf | |
---|
definiens | definition | "Hille formula" |
---|
score | 2 |
---|
|
definition | "Laguerre polynomial" |
---|
score | 2 |
---|
|
definition | "series on the left converge" |
---|
score | 0 |
---|
|
definition | "generalized Laguerre polynomial" |
---|
score | 2 |
---|
|
definition | "confluent hypergeometric function" |
---|
score | 2 |
---|
|
|
---|
|
|
---|
|
id | 32 |
---|
pid | 82 |
---|
eid | "math.82.8" |
---|
title | "Associated Legendre polynomials" |
---|
formulae | id | "FORMULA_6f29e15c07089506a70db1b3f54b27a5" |
---|
formula | "c_{lm} = (-1)^m \frac{(\ell-m)!}{(\ell+m)!}" |
---|
semanticFormula | "c_{lm} = (-1)^m \frac{(\ell-m)!}{(\ell+m)!}" |
---|
confidence | 0 |
---|
translations | Mathematica | translation | "Subscript[c, l, m] == (- 1)^(m)*Divide[(\[ScriptL]- m)!,(\[ScriptL]+ m)!]" |
---|
|
---|
Maple | translation | "c[l, m] = (- 1)^(m)*(factorial(ell - m))/(factorial(ell + m))" |
---|
|
---|
|
---|
positions | |
---|
includes | |
---|
isPartOf | |
---|
definiens | definition | "proportionality constant" |
---|
score | 2 |
---|
|
|
---|
|
|
---|
|
id | 33 |
---|
pid | 83 |
---|
eid | "math.83.3" |
---|
title | "Scorer's function" |
---|
formulae | id | "FORMULA_c8116180276232704ca3e9f67f207565" |
---|
formula | "\mathrm{Gi}(x) = \frac{1}{\pi} \int_0^\infty \sin\left(\frac{t^3}{3} + xt\right)\, dt" |
---|
semanticFormula | "\ScorerGi@{x} = \frac{1}{\cpi} \int_0^\infty \sin(\frac{t^3}{3} + xt) \diff{t}" |
---|
confidence | 0.7929614010341081 |
---|
translations | Mathematica | translation | "ScorerGi[x] == Divide[1,Pi]*Integrate[Sin[Divide[(t)^(3),3]+ x*t], {t, 0, Infinity}, GenerateConditions->None]" |
---|
translationInformation | subEquations | "ScorerGi[x] = Divide[1,Pi]*Integrate[Sin[Divide[(t)^(3),3]+ x*t], {t, 0, Infinity}, GenerateConditions->None]" |
|
---|
freeVariables | |
---|
constraints | |
---|
tokenTranslations | \ScorerGi | "Scorer function Gi; Example: \ScorerGi@{z}
Will be translated to: ScorerGi[$0]
Relevant links to definitions:
DLMF: http://dlmf.nist.gov/9.12#i
Mathematica: https://" |
---|
\cpi | "Pi was translated to: Pi" |
---|
\sin | "Sine; Example: \sin@@{z}
Will be translated to: Sin[$0]
Relevant links to definitions:
DLMF: http://dlmf.nist.gov/4.14#E1
Mathematica: https://reference.wolfram.com/language/ref/Sin.html" |
---|
|
---|
|
---|
|
---|
Maple | translation | "AiryBi(x)*(int(AiryAi(t), t = (x) .. infinity))+AiryAi(x)*(int(AiryBi(t), t = 0 .. (x))) = (1)/(Pi)*int(sin(((t)^(3))/(3)+ x*t), t = 0..infinity)" |
---|
translationInformation | subEquations | "AiryBi(x)*(int(AiryAi(t), t = (x) .. infinity))+AiryAi(x)*(int(AiryBi(t), t = 0 .. (x))) = (1)/(Pi)*int(sin(((t)^(3))/(3)+ x*t), t = 0..infinity)" |
|
---|
freeVariables | |
---|
constraints | |
---|
tokenTranslations | \ScorerGi | "Scorer function Gi; Example: \ScorerGi@{z}
Will be translated to:
Alternative translations: [AiryBi($0)*(int(AiryAi(t), t = ($0) .. infinity))+AiryAi($0)*(int(AiryBi(t), t = 0 .. ($0)))]Relevant links to definitions:
DLMF: http://dlmf.nist.gov/9.12#i
Maple: https://www.maplesoft.com/support/help/maple/view.aspx?path=Airy" |
---|
\cpi | "Pi was translated to: Pi" |
---|
\sin | "Sine; Example: \sin@@{z}
Will be translated to: sin($0)
Relevant links to definitions:
DLMF: http://dlmf.nist.gov/4.14#E1
Maple: https://www.maplesoft.com/support/help/maple/view.aspx?path=sin" |
---|
|
---|
|
---|
|
---|
|
---|
positions | |
---|
includes | |
---|
isPartOf | |
---|
definiens | definition | "Scorer 's function" |
---|
score | 2 |
---|
|
definition | "special function" |
---|
score | 1 |
---|
|
|
---|
|
|
---|
|
id | 34 |
---|
pid | 84 |
---|
eid | "math.84.31" |
---|
title | "Voigt profile" |
---|
formulae | id | "FORMULA_e663d20df3cca1ae5dec645d320cd511" |
---|
formula | "\frac{\partial^2}{\partial x^2} V(x;\sigma,\gamma)= \frac{x^2-\gamma^2-\sigma^2}{\sigma^4} \frac{\operatorname{Re}[w(z)]}{\sigma\sqrt{2 \pi}}-\frac{2 x \gamma}{\sigma^4} \frac{\operatorname{Im}[w(z)]}{\sigma\sqrt{2 \pi}}+\frac{\gamma}{\sigma^4}\frac{1}{\pi}" |
---|
semanticFormula | "\deriv[2]{}{x} V(x ; \sigma , \gamma) = \frac{x^2-\gamma^2-\sigma^2}{\sigma^4} \frac{\realpart [\Faddeevaw@{z}]}{\sigma \sqrt{2 \cpi}} - \frac{2 x \gamma}{\sigma^4} \frac{\imagpart [\Faddeevaw@{z}]}{\sigma \sqrt{2 \cpi}} + \frac{\gamma}{\sigma^4} \frac{1}{\cpi}" |
---|
confidence | 0.8620216359266987 |
---|
translations | Mathematica | translation | "D[PDF[VoigtDistribution[\[Gamma], \[Sigma]], x], {x, 2}] == Divide[x^2 - \[Gamma]^2 - \[Sigma]^2, \[Sigma]^4] * Divide[ Re[ Exp[-(Divide[x+I*y,\[Sigma]*Sqrt[2]])^2]*Erfc[-I*(Divide[x+I*y,\[Sigma]*Sqrt[2]])] ], \[Sigma]*Sqrt[2*Pi]] - Divide[2*x*y, \[Sigma]^4] * Divide[Im[Exp[-(Divide[x+I*y,\[Sigma]*Sqrt[2]])^2]*Erfc[-I*(Divide[x+I*y,\[Sigma]*Sqrt[2]])]], \[Sigma]*Sqrt[2*Pi]] + Divide[\[Gamma],\[Sigma]^4]*Divide[1,Pi]" |
---|
|
---|
|
---|
positions | |
---|
includes | "w(z)]" |
"z" |
"V(x;\sigma,\gamma)" |
"x" |
"w(z)" |
|
---|
isPartOf | |
---|
definiens | definition | "term of the Faddeeva function" |
---|
score | 2 |
---|
|
definition | "second derivative profile" |
---|
score | 2 |
---|
|
definition | "real part of the Faddeeva function" |
---|
score | 2 |
---|
|
definition | "Faddeeva function" |
---|
score | 2 |
---|
|
definition | "Voigt function" |
---|
score | 2 |
---|
|
definition | "Voigt profile" |
---|
score | 2 |
---|
|
|
---|
|
|
---|
|
id | 35 |
---|
pid | 85 |
---|
eid | "math.85.57" |
---|
title | "Lerch zeta function" |
---|
formulae | id | "FORMULA_a0cc62efe3cabac6d8bebe5b8b94b5fa" |
---|
formula | "\Phi(z,s,a) = \frac{1}{1-z} \frac{1}{a^{s}} + \sum_{n=1}^{N-1} \frac{(-1)^{n} \mathrm{Li}_{-n}(z)}{n!} \frac{(s)_{n}}{a^{n+s}} +O(a^{-N-s})" |
---|
semanticFormula | "\Phi(z , s , a) = \frac{1}{1-z} \frac{1}{a^{s}} + \sum_{n=1}^{N-1} \frac{(-1)^{n} \polylog{-n}@{z}}{n!} \frac{\Pochhammersym{s}{n}}{a^{n+s}} + \bigO{a^{-N-s}}" |
---|
confidence | 0.8662724998444776 |
---|
translations | Mathematica | translation | "\[CapitalPhi][z, s, a] == Divide[1,1 - z]*Divide[1,(a)^(s)]+ Sum[Divide[(- 1)^(n)* PolyLog[-n, z],(n)!]*Divide[Pochhammer[s, n],(a)^(n + s)], {n, 1, N - 1}, GenerateConditions->None]+ O[a]^(- N - s)" |
---|
|
---|
|
---|
positions | |
---|
includes | "a" |
"\Phi(z,s,a)" |
"z" |
"s" |
|
---|
isPartOf | |
---|
definiens | definition | "asymptotic expansion" |
---|
score | 2 |
---|
|
definition | "Pochhammer symbol" |
---|
score | 1 |
---|
|
definition | "Lerch transcendent" |
---|
score | 2 |
---|
|
definition | "polylogarithm" |
---|
score | 2 |
---|
|
definition | "polylogarithm function" |
---|
score | 2 |
---|
|
definition | "Pochhammer symbol" |
---|
score | 2 |
---|
|
|
---|
|
|
---|
|
id | 36 |
---|
pid | 86 |
---|
eid | "math.86.44" |
---|
title | "Confluent hypergeometric function" |
---|
formulae | id | "FORMULA_d83a3ce5244b566d8f71edb7f81afa43" |
---|
formula | "M(1,2,z)=(e^z-1)/z,\ \ M(1,3,z)=2!(e^z-1-z)/z^2" |
---|
semanticFormula | "\KummerconfhyperM@{1}{2}{z} = (\expe^z - 1) / z , \KummerconfhyperM@{1}{3}{z} = 2! (\expe^z - 1 - z) / z^2" |
---|
confidence | 0.912945064646862 |
---|
translations | Mathematica | translation | "Hypergeometric1F1[1, 2, z] == (Exp[z]- 1)/z
Hypergeometric1F1[1, 3, z] == (2)!*(Exp[z]- 1 - z)/(z)^(2)" |
---|
|
---|
Maple | translation | "KummerM(1, 2, z) = (exp(z)- 1)/z; KummerM(1, 3, z) = factorial(2)*(exp(z)- 1 - z)/(z)^(2)" |
---|
|
---|
|
---|
positions | |
---|
includes | "M" |
"U(a, b, z)" |
"z" |
"U(n,c,z)" |
"\Phi(a, b, z)" |
"M(n,b,z)" |
"M(a, b, z)" |
|
---|
isPartOf | |
---|
definiens | |
definition | "Kummer 's function of the first kind" |
---|
score | 2 |
---|
|
definition | "confluent hypergeometric function" |
---|
score | 1 |
---|
|
definition | "hypergeometric function" |
---|
score | 1 |
---|
|
|
---|
|
|
---|
|
id | 37 |
---|
pid | 87 |
---|
eid | "math.87.54" |
---|
title | "Mathieu function" |
---|
formulae | id | "FORMULA_f694135eafc20195a9d96ca3ce8af674" |
---|
formula | "\sigma = \pm 1" |
---|
semanticFormula | "\sigma = \pm 1" |
---|
confidence | 0 |
---|
translations | Mathematica | translation | "\[Sigma] == \[PlusMinus]1" |
---|
translationInformation | subEquations | "\[Sigma] = + 1" |
"\[Sigma] = - 1" |
|
---|
freeVariables | |
---|
constraints | |
---|
tokenTranslations | \pm | "was translated to: \[PlusMinus]" |
---|
|
---|
|
---|
|
---|
Maple | translation | "sigma = &+- 1" |
---|
translationInformation | subEquations | "sigma = + 1" |
"sigma = - 1" |
|
---|
freeVariables | |
---|
constraints | |
---|
tokenTranslations | \pm | "was translated to: &+-" |
---|
|
---|
|
---|
|
---|
|
---|
positions | |
---|
includes | |
---|
isPartOf | |
---|
definiens | |
---|
|
|
---|
|
id | 38 |
---|
pid | 88 |
---|
eid | "math.88.0" |
---|
title | "Parabolic cylinder function" |
---|
formulae | id | "FORMULA_bec6388631b20f2af14e375b13e1533f" |
---|
formula | "\frac{d^2f}{dz^2} + \left(\tilde{a}z^2+\tilde{b}z+\tilde{c}\right)f=0" |
---|
semanticFormula | "\deriv [2]{f}{z} +(\tilde{a} z^2 + \tilde{b} z + \tilde{c}) f = 0" |
---|
confidence | 0 |
---|
translations | Mathematica | translation | "D[f[z], {z, 2}] + (a*z^2 + b*z + c)*f[z] == 0" |
---|
|
---|
|
---|
positions | |
---|
includes | |
---|
isPartOf | |
---|
definiens | definition | "solution to the differential equation" |
---|
score | 2 |
---|
|
definition | "special function" |
---|
score | 1 |
---|
|
definition | "mathematics" |
---|
score | 0 |
---|
|
definition | "parabolic cylinder function" |
---|
score | 1 |
---|
|
|
---|
|
|
---|
|
id | 39 |
---|
pid | 89 |
---|
eid | "math.89.23" |
---|
title | "Painlevé transcendents" |
---|
formulae | id | "FORMULA_0a306ab913684a1ba3935715d3dd8ad8" |
---|
formula | "c=\infty" |
---|
semanticFormula | "c=\infty" |
---|
confidence | 0 |
---|
translations | Mathematica | translation | "c == Infinity" |
---|
|
---|
Maple | translation | "c = infinity" |
---|
|
---|
|
---|
positions | |
---|
includes | |
---|
isPartOf | |
---|
definiens | definition | "central charge of the Virasoro algebra" |
---|
score | 2 |
---|
|
definition | "combination of conformal block" |
---|
score | 1 |
---|
|
definition | "Painlevé VI equation" |
---|
score | 1 |
---|
|
definition | "two-dimensional conformal field theory" |
---|
score | 1 |
---|
|
|
---|
|
|
---|
|
id | 40 |
---|
pid | 90 |
---|
eid | "math.90.7" |
---|
title | "Hypergeometric function" |
---|
formulae | id | "FORMULA_aaffb0ad8dea17d68491d9fb6ebcfbe3" |
---|
formula | "c = a + 1" |
---|
semanticFormula | "c = a + 1" |
---|
confidence | 0 |
---|
translations | |
---|
positions | |
---|
includes | |
---|
isPartOf | |
---|
definiens | |
---|
|
|
---|
|
id | 41 |
---|
pid | 91 |
---|
eid | "math.91.47" |
---|
title | "Barnes G-function" |
---|
formulae | id | "FORMULA_6bc0d742c4d25c1abb61158150489676" |
---|
formula | "\frac{1}{\Gamma(z)}= z e^{\gamma z} \prod_{k=1}^\infty \left\{ \left(1+\frac{z}{k}\right)e^{-z/k} \right\}" |
---|
semanticFormula | "\frac{1}{\EulerGamma@{z}} = z \expe^{\EulerConstant z} \prod_{k=1}^\infty \{(1 + \frac{z}{k}) \expe^{-z/k} \}" |
---|
confidence | 0.8614665289982916 |
---|
translations | Mathematica | translation | "Divide[1,Gamma[z]] == z*Exp[EulerGamma*z]*Product[(1 +Divide[z,k])*Exp[- z/k], {k, 1, Infinity}, GenerateConditions->None]" |
---|
translationInformation | subEquations | "Divide[1,Gamma[z]] = z*Exp[EulerGamma*z]*Product[(1 +Divide[z,k])*Exp[- z/k], {k, 1, Infinity}, GenerateConditions->None]" |
|
---|
freeVariables | |
---|
constraints | |
---|
tokenTranslations | \expe | "Recognizes e with power as the exponential function. It was translated as a function." |
---|
\EulerConstant | "Euler-Mascheroni constant was translated to: EulerGamma" |
---|
\EulerGamma | "Euler Gamma function; Example: \EulerGamma@{z}
Will be translated to: Gamma[$0]
Relevant links to definitions:
DLMF: http://dlmf.nist.gov/5.2#E1
Mathematica: https://reference.wolfram.com/language/ref/Gamma.html" |
---|
|
---|
|
---|
|
---|
Maple | translation | "(1)/(GAMMA(z)) = z*exp(gamma*z)*product((1 +(z)/(k))*exp(- z/k), k = 1..infinity)" |
---|
translationInformation | subEquations | "(1)/(GAMMA(z)) = z*exp(gamma*z)*product((1 +(z)/(k))*exp(- z/k), k = 1..infinity)" |
|
---|
freeVariables | |
---|
constraints | |
---|
tokenTranslations | \expe | "Recognizes e with power as the exponential function. It was translated as a function." |
---|
\EulerConstant | "Euler-Mascheroni constant was translated to: gamma" |
---|
\EulerGamma | "Euler Gamma function; Example: \EulerGamma@{z}
Will be translated to: GAMMA($0)
Relevant links to definitions:
DLMF: http://dlmf.nist.gov/5.2#E1
Maple: https://www.maplesoft.com/support/help/maple/view.aspx?path=GAMMA" |
---|
|
---|
|
---|
|
---|
|
---|
positions | |
---|
includes | "\,\Gamma(x)" |
"\, \gamma" |
"z" |
"\,\gamma" |
|
---|
isPartOf | |
---|
definiens | |
definition | "Mascheroni" |
---|
score | 1 |
---|
|
definition | "gamma function" |
---|
score | 2 |
---|
|
|
---|
|
|
---|
|
id | 42 |
---|
pid | 92 |
---|
eid | "math.92.1-1" |
---|
title | "Heun function" |
---|
formulae | id | "FORMULA_8c78ef87048e61947a6d7d4b5e06aa63" |
---|
formula | "192/24 = 8 = 2 \times 4" |
---|
semanticFormula | "192/24 = 8 = 2 \times 4" |
---|
confidence | 0 |
---|
translations | Mathematica | translation | "192/24 == 8 == 2 * 4" |
---|
translationInformation | subEquations | |
---|
freeVariables | |
---|
constraints | |
---|
tokenTranslations | \times | "was translated to: *" |
---|
|
---|
|
---|
numericResults | overallResult | "SUCCESS" |
---|
numberOfTests | 2 |
---|
numberOfFailedTests | 0 |
---|
numberOfSuccessfulTests | 2 |
---|
numberOfSkippedTests | 0 |
---|
numberOfErrorTests | 0 |
---|
wasAborted | false |
---|
crashed | false |
---|
testCalculationsGroups | lhs | "192/24" |
---|
rhs | "8" |
---|
testExpression | "(192/24)-(8)" |
---|
activeConstraints | |
---|
testCalculations | result | "SUCCESS" |
---|
resultExpression | "0." |
---|
testValues | |
---|
|
|
---|
|
lhs | "8" |
---|
rhs | "2 * 4" |
---|
testExpression | "(8)-(2 * 4)" |
---|
activeConstraints | |
---|
testCalculations | result | "SUCCESS" |
---|
resultExpression | "0." |
---|
testValues | |
---|
|
|
---|
|
|
---|
|
---|
symbolicResults | overallResult | "SUCCESS" |
---|
numberOfTests | 2 |
---|
numberOfFailedTests | 0 |
---|
numberOfSuccessfulTests | 2 |
---|
numberOfSkippedTests | 0 |
---|
numberOfErrorTests | 0 |
---|
crashed | false |
---|
testCalculationsGroup | lhs | "192/24" |
---|
rhs | "8" |
---|
testExpression | "(192/24)-(8)" |
---|
testCalculations | result | "SUCCESS" |
---|
testTitle | "Simple" |
---|
testExpression | "FullSimplify[(192/24)-(8)]" |
---|
resultExpression | "0" |
---|
wasAborted | false |
---|
conditionallySuccessful | false |
---|
|
|
---|
|
lhs | "8" |
---|
rhs | "2 * 4" |
---|
testExpression | "(8)-(2 * 4)" |
---|
testCalculations | result | "SUCCESS" |
---|
testTitle | "Simple" |
---|
testExpression | "FullSimplify[(8)-(2 * 4)]" |
---|
resultExpression | "0" |
---|
wasAborted | false |
---|
conditionallySuccessful | false |
---|
|
|
---|
|
|
---|
|
---|
|
---|
SymPy | translation | "192/24 == 8 == 2 * 4" |
---|
translationInformation | subEquations | |
---|
freeVariables | |
---|
constraints | |
---|
tokenTranslations | \times | "was translated to: *" |
---|
|
---|
|
---|
|
---|
Maple | translation | "192/24 = 8 = 2 * 4" |
---|
translationInformation | subEquations | |
---|
freeVariables | |
---|
constraints | |
---|
tokenTranslations | \times | "was translated to: *" |
---|
|
---|
|
---|
numericResults | overallResult | "SUCCESS" |
---|
numberOfTests | 2 |
---|
numberOfFailedTests | 0 |
---|
numberOfSuccessfulTests | 2 |
---|
numberOfSkippedTests | 0 |
---|
numberOfErrorTests | 0 |
---|
wasAborted | false |
---|
crashed | false |
---|
testCalculationsGroups | lhs | "192/24" |
---|
rhs | "8" |
---|
testExpression | "evalf((192/24)-(8))" |
---|
activeConstraints | |
---|
testCalculations | result | "SUCCESS" |
---|
resultExpression | "0." |
---|
testValues | |
---|
|
|
---|
|
lhs | "8" |
---|
rhs | "2 * 4" |
---|
testExpression | "evalf((8)-(2 * 4))" |
---|
activeConstraints | |
---|
testCalculations | result | "SUCCESS" |
---|
resultExpression | "0." |
---|
testValues | |
---|
|
|
---|
|
|
---|
|
---|
symbolicResults | overallResult | "SUCCESS" |
---|
numberOfTests | 2 |
---|
numberOfFailedTests | 0 |
---|
numberOfSuccessfulTests | 2 |
---|
numberOfSkippedTests | 0 |
---|
numberOfErrorTests | 0 |
---|
crashed | false |
---|
testCalculationsGroup | lhs | "192/24" |
---|
rhs | "8" |
---|
testExpression | "(192/24)-(8)" |
---|
testCalculations | result | "SUCCESS" |
---|
testTitle | "Simple" |
---|
testExpression | "simplify((192/24)-(8))" |
---|
resultExpression | "0" |
---|
wasAborted | false |
---|
conditionallySuccessful | false |
---|
|
|
---|
|
lhs | "8" |
---|
rhs | "2 * 4" |
---|
testExpression | "(8)-(2 * 4)" |
---|
testCalculations | result | "SUCCESS" |
---|
testTitle | "Simple" |
---|
testExpression | "simplify((8)-(2 * 4))" |
---|
resultExpression | "0" |
---|
wasAborted | false |
---|
conditionallySuccessful | false |
---|
|
|
---|
|
|
---|
|
---|
|
---|
|
---|
positions | |
---|
includes | |
---|
isPartOf | |
---|
definiens | |
---|
|
|
---|
|
id | 43 |
---|
pid | 93 |
---|
eid | "math.93.0-1" |
---|
title | "Gegenbauer polynomials" |
---|
formulae | id | "FORMULA_34d9d355f0c0e28d91465c3b575fb0a1" |
---|
formula | "=2" |
---|
semanticFormula | "\alpha = 2" |
---|
confidence | 0 |
---|
translations | Mathematica | translation | "\[Alpha] = 2" |
---|
|
---|
Maple | |
---|
|
---|
positions | |
---|
includes | |
---|
isPartOf | "\begin{align}C_0^\alpha(x) & = 1 \\C_1^\alpha(x) & = 2 \alpha x \\C_n^\alpha(x) & = \frac{1}{n}[2x(n+\alpha-1)C_{n-1}^\alpha(x) - (n+2\alpha-2)C_{n-2}^\alpha(x)].\end{align}" |
|
---|
definiens | |
---|
|
|
---|
|
id | 44 |
---|
pid | 94 |
---|
eid | "math.94.4" |
---|
title | "Basic hypergeometric series" |
---|
formulae | id | "FORMULA_33e3b57bb75d5ea3b5b8ddcceef38430" |
---|
formula | "\lim_{q\to 1}\;_{j}\phi_k \left[\begin{matrix} q^{a_1} & q^{a_2} & \ldots & q^{a_j} \\ q^{b_1} & q^{b_2} & \ldots & q^{b_k} \end{matrix} ; q,(q-1)^{1+k-j} z \right]=\;_{j}F_k \left[\begin{matrix} a_1 & a_2 & \ldots & a_j \\ b_1 & b_2 & \ldots & b_k \end{matrix} ;z \right]" |
---|
semanticFormula | "\lim_{q\to 1} \qgenhyperphi{j}{k}@{q^{a_1} , q^{a_2} , \ldots , q^{a_j}}{q^{b_1} , q^{b_2} , \ldots , q^{b_k}}{q}{(q - 1)^{1+k-j} z} = \genhyperF{j}{k}@{a_1 , a_2 , \ldots , a_j}{b_1 , b_2 , \ldots , b_k}{z}" |
---|
confidence | 0 |
---|
translations | |
---|
positions | |
---|
includes | |
---|
isPartOf | |
---|
definiens | definition | "q-analog of the hypergeometric series" |
---|
score | 2 |
---|
|
definition | "unilateral basic hypergeometric series" |
---|
score | 2 |
---|
|
definition | "basic hypergeometric series" |
---|
score | 2 |
---|
|
|
---|
|
|
---|
|
id | 45 |
---|
pid | 95 |
---|
eid | "math.95.0" |
---|
title | "Whittaker function" |
---|
formulae | id | "FORMULA_16ec3a3583ee2b4621d316bf839c1725" |
---|
formula | "\frac{d^2w}{dz^2}+\left(-\frac{1}{4}+\frac{\kappa}{z}+\frac{1/4-\mu^2}{z^2}\right)w=0" |
---|
semanticFormula | "\deriv [2]{w}{z} +(- \frac{1}{4} + \frac{\kappa}{z} + \frac{1/4-\mu^2}{z^2}) w = 0" |
---|
confidence | 0 |
---|
translations | Mathematica | translation | "D[w, {z, 2}]+(-Divide[1,4]+Divide[\[Kappa],z]+Divide[1/4 - \[Mu]^(2),(z)^(2)])*w == 0" |
---|
|
---|
Maple | translation | "diff(w, [z$(2)])+(-(1)/(4)+(kappa)/(z)+(1/4 - (mu)^(2))/((z)^(2)))*w = 0" |
---|
|
---|
|
---|
positions | |
---|
includes | |
---|
isPartOf | |
---|
definiens | definition | "Whittaker 's equation" |
---|
score | 2 |
---|
|
definition | "Whittaker function" |
---|
score | 1 |
---|
|
|
---|
|
|
---|
|
id | 46 |
---|
pid | 96 |
---|
eid | "math.96.1" |
---|
title | "Lemniscatic elliptic function" |
---|
formulae | id | "FORMULA_24137d79f0a282f42fdf9ea93576e998" |
---|
formula | "e_1=\tfrac12,\qquad e_2=0,\qquad e_3=-\tfrac12" |
---|
semanticFormula | "e_1=\tfrac12,\qquad e_2=0,\qquad e_3=-\tfrac12" |
---|
confidence | 0 |
---|
translations | Mathematica | translation | "Subscript[e, 1] == Divide[1,2]
Subscript[e, 2] = 0
Subscript[e, 3] = -Divide[1,2]" |
---|
|
---|
Maple | translation | "e[1] := (1)/(2); e[2] := 0; e[3] := -(1)/(2)" |
---|
|
---|
|
---|
positions | |
---|
includes | |
---|
isPartOf | |
---|
definiens | definition | "constant" |
---|
score | 2 |
---|
|
|
---|
|
|
---|
|
id | 47 |
---|
pid | 98 |
---|
eid | "math.98.53-1" |
---|
title | "Meijer G-function" |
---|
formulae | id | "FORMULA_028eb01ef675c90ea0f74fcdd93fc78c" |
---|
formula | "\gamma> 0,n-p=m-q> 0" |
---|
semanticFormula | "\gamma> 0,n-p=m-q> 0" |
---|
confidence | 0 |
---|
translations | Mathematica | translation | "\[Gamma] > 0
n - p == m - q > 0" |
---|
|
---|
Maple | translation | "gamma > 0; n - p = m - q > 0" |
---|
|
---|
|
---|
positions | |
---|
includes | "m" |
"q" |
"p=q> 0" |
"n" |
"p=q" |
"\gamma>" |
|
---|
isPartOf | |
---|
definiens | definition | "constraint" |
---|
score | 2 |
---|
|
|
---|
|
|
---|
|
id | 48 |
---|
pid | 99 |
---|
eid | "math.99.30" |
---|
title | "3-j symbol" |
---|
formulae | id | "FORMULA_3f987b881a59a03904ff9a79476faae0" |
---|
formula | "\begin{pmatrix} j \\ m \quad m'\end{pmatrix}:= \sqrt{2 j + 1}\begin{pmatrix} j & 0 & j \\ m & 0 & m'\end{pmatrix}= (-1)^{j - m'} \delta_{m, -m'}" |
---|
semanticFormula | "\begin{pmatrix} j \\ m \quad m'\end{pmatrix}:= \sqrt{2 j + 1}\begin{pmatrix} j & 0 & j \\ m & 0 & m'\end{pmatrix}= (-1)^{j - m'} \delta_{m, -m'}" |
---|
confidence | 0 |
---|
translations | Mathematica | translation | "Wigner[j_, m_, m\[Prime]_] := Sqrt[2*j+1] * {{j, 0, j}, {m, 0, m\[Prime]}} = (-1)^(j-m\[Prime])*Subscript[\[Delta], m, -m\[Prime]]" |
---|
|
---|
|
---|
positions | |
---|
includes | |
---|
isPartOf | |
---|
definiens | definition | "Wigner 1-jm symbol" |
---|
score | 2 |
---|
|
definition | "metric tensor in angular-momentum theory" |
---|
score | 2 |
---|
|
definition | "quantity" |
---|
score | 0 |
---|
|
|
---|
|
|
---|
|
id | 49 |
---|
pid | 100 |
---|
eid | "math.100.14" |
---|
title | "6-j symbol" |
---|
formulae | id | "FORMULA_21d6ec52b25bb130bf068c4857bbcb93" |
---|
formula | "\begin{Bmatrix} i & j & \ell\\ k & m & n \end{Bmatrix}= (\Phi_{i,j}^{k,m})_{\ell,n}" |
---|
semanticFormula | "\Wignersixjsym{i}{j}{\ell}{k}{m}{n} = (\Phi_{i,j}^{k,m})_{\ell,n}" |
---|
confidence | 0.8624533614429312 |
---|
translations | |
---|
positions | |
---|
includes | |
---|
isPartOf | |
---|
definiens | definition | "6j symbol" |
---|
score | 2 |
---|
|
definition | "associativity isomorphism" |
---|
score | 2 |
---|
|
|
definition | "vector space isomorphism" |
---|
score | 2 |
---|
|
|
definition | "Wigner 's 6 - j symbol" |
---|
score | 2 |
---|
|
|
---|
|
|
---|
|
id | 50 |
---|
pid | 101 |
---|
eid | "math.101.32" |
---|
title | "9-j symbol" |
---|
formulae | id | "FORMULA_08d08037d9e64d85aa3645470ce645af" |
---|
formula | "\sum_{j_7 j_8} (2j_7+1)(2j_8+1) \begin{Bmatrix} j_1 & j_2 & j_3\\ j_4 & j_5 & j_6\\ j_7 & j_8 & j_9 \end{Bmatrix} \begin{Bmatrix} j_1 & j_2 & j_3'\\ j_4 & j_5 & j_6'\\ j_7 & j_8 & j_9 \end{Bmatrix} = \frac{\delta_{j_3j_3'}\delta_{j_6j_6'} \begin{Bmatrix} j_1 & j_2 & j_3 \end{Bmatrix} \begin{Bmatrix} j_4 & j_5 & j_6\end{Bmatrix} \begin{Bmatrix} j_3 & j_6 & j_9 \end{Bmatrix}} {(2j_3+1)(2j_6+1)}" |
---|
semanticFormula | "\sum_{j_7 j_8} (2j_7+1)(2j_8+1) \Wignerninejsym{j_1}{j_2}{j_3}{j_4}{j_5}{j_6}{j_7}{j_8}{j_9} \Wignerninejsym{j_1}{j_2}{j_3'}{j_4}{j_5}{j_6'}{j_7}{j_8}{j_9} = \frac{\delta_{j_3j_3'}\delta_{j_6j_6'} \begin{Bmatrix} j_1 & j_2 & j_3 \end{Bmatrix} \begin{Bmatrix} j_4 & j_5 & j_6\end{Bmatrix} \begin{Bmatrix} j_3 & j_6 & j_9 \end{Bmatrix}}{(2j_3+1)(2j_6+1)}" |
---|
confidence | 0 |
---|
translations | |
---|
positions | |
---|
includes | |
---|
isPartOf | |
---|
definiens | definition | "orthogonality relation" |
---|
score | 1 |
---|
|
definition | "triangular delta" |
---|
score | 2 |
---|
|
|
definition | "Wigner 's 9 - j symbol" |
---|
score | 2 |
---|
|
|
---|
|
|
---|
|
id | 51 |
---|
pid | 102 |
---|
eid | "math.102.5" |
---|
title | "Kravchuk polynomials" |
---|
formulae | id | "FORMULA_6b7eb62a3e02e45fb1365dd2f07a5bbc" |
---|
formula | "\mathcal{K}_k(x; n,q) = \sum_{j=0}^{k}(-q)^j (q-1)^{k-j} \binom {n-j}{k-j} \binom{x}{j}" |
---|
semanticFormula | "\KrawtchoukpolyK{k}@{x}{n}{q} = \sum_{j=0}^{k}(-q)^j (q-1)^{k-j} \binom {n-j}{k-j} \binom{x}{j}" |
---|
confidence | 0 |
---|
translations | Mathematica | translation | "K[k_, x_, n_, q_] := Sum[(- q)^(j)*(q - 1)^(k - j)*Binomial[n - j,k - j]*Binomial[x,j], {j, 0, k}, GenerateConditions->None]" |
---|
|
---|
|
---|
positions | |
---|
includes | |
---|
isPartOf | |
---|
definiens | definition | "following alternative expression" |
---|
score | 0 |
---|
|
definition | "Kravchuk polynomial" |
---|
score | 2 |
---|
|
|
---|
|
|
---|
|
id | 52 |
---|
pid | 103 |
---|
eid | "math.103.8" |
---|
title | "Kelvin functions" |
---|
formulae | id | "FORMULA_07453e6baf8f216467f9b664de795bfc" |
---|
formula | "g_1(x) = \sum_{k \geq 1} \frac{\sin(k \pi / 4)}{k! (8x)^k} \prod_{l = 1}^k (2l - 1)^2" |
---|
semanticFormula | "g_1(x) = \sum_{k \geq 1} \frac{\sin(k \cpi / 4)}{k! (8x)^k} \prod_{l = 1}^k(2 l - 1)^2" |
---|
confidence | 0 |
---|
translations | Mathematica | translation | "Subscript[g, 1][x_] := Sum[Divide[Sin[k*Pi/4],(k)!*(8*x)^(k)]*Product[(2*l - 1)^(2), {l, 1, k}, GenerateConditions->None], {k, 1, Infinity}, GenerateConditions->None]" |
---|
|
---|
Maple | translation | "g[1] := (x) -> sum((sin(k*Pi/4))/(factorial(k)*(8*x)^(k))*product((2*l - 1)^(2), l = 1..k), k = 1..infinity)" |
---|
|
---|
|
---|
positions | |
---|
includes | |
---|
isPartOf | |
---|
definiens | definition | "series expansion" |
---|
score | 1 |
---|
|
definition | "special case" |
---|
score | 0 |
---|
|
definition | "asymptotic series" |
---|
score | 1 |
---|
|
definition | "definition" |
---|
score | 2 |
---|
|
|
---|
|
|
---|
|
id | 53 |
---|
pid | 104 |
---|
eid | "math.104.2" |
---|
title | "Lommel function" |
---|
formulae | id | "FORMULA_03f5cb50caaedb9f0a4ada231fd61c58" |
---|
formula | "S_{\mu,\nu}(z) = s_{\mu,\nu}(z) + 2^{\mu-1} \Gamma\left(\frac{\mu + \nu + 1}{2}\right) \Gamma\left(\frac{\mu - \nu + 1}{2}\right)\left(\sin \left[(\mu - \nu)\frac{\pi}{2}\right] J_\nu(z) - \cos \left[(\mu - \nu)\frac{\pi}{2}\right] Y_\nu(z)\right)" |
---|
semanticFormula | "\LommelS{\mu}{\nu}@{z} = \Lommels{\mu}{\nu}@{z} + 2^{\mu-1} \EulerGamma@{\frac{\mu + \nu + 1}{2}} \EulerGamma@{\frac{\mu - \nu + 1}{2}}(\sin [(\mu - \nu) \frac{\cpi}{2}] \BesselJ{\nu}@{z} - \cos [(\mu - \nu) \frac{\cpi}{2}] \BesselY{\nu}@{z})" |
---|
confidence | 0.8775479393290169 |
---|
translations | Mathematica | translation | "S[\[Mu]_, \[Nu]_, z_] := Divide[Pi,2]*(BesselY[\[Nu], z]*Integrate[(x)^\[Mu]* BesselJ[\[Nu], x], {x, 0, z}, GenerateConditions->None]- BesselJ[\[Nu], z]*Integrate[(x)^\[Mu]* BesselY[\[Nu], x], {x, 0, z}, GenerateConditions->None]) + (2)^(\[Mu]- 1)* Gamma[Divide[\[Mu]+ \[Nu]+ 1,2]]*Gamma[Divide[\[Mu]- \[Nu]+ 1,2]]*(Sin[((\[Mu]- \[Nu])*Divide[Pi,2])*]*BesselJ[\[Nu], z]- Cos[((\[Mu]- \[Nu])*Divide[Pi,2])*]*BesselY[\[Nu], z])" |
---|
|
---|
Maple | translation | "LommelS1(mu, nu, z) = (Pi)/(2)*(BesselY(nu, z)*int((x)^(mu)* BesselJ(nu, x), x = 0..z)- BesselJ(nu, z)*int((x)^(mu)* BesselY(nu, x), x = 0..z))" |
---|
|
---|
|
---|
positions | |
---|
includes | "s_{\mu,\nu}(z)" |
"S_{\mu,\nu}(z)" |
"J_{\nu}(z)" |
"Y_{\nu}(z)" |
|
---|
isPartOf | |
---|
definiens | definition | "Lommel function" |
---|
score | 2 |
---|
|
definition | "Bessel function of the first kind" |
---|
score | 2 |
---|
|
definition | "Bessel function of the second kind" |
---|
score | 2 |
---|
|
|
---|
|
|
---|
|
id | 54 |
---|
pid | 105 |
---|
eid | "math.105.18" |
---|
title | "Struve function" |
---|
formulae | id | "FORMULA_6dc2da7f595d2f199fbc15768167f006" |
---|
formula | "\mathbf{H}_{\alpha}(z) = \frac{z^{\alpha+1}}{2^{\alpha}\sqrt{\pi} \Gamma \left (\alpha+\tfrac{3}{2} \right )} {}_1F_2 \left (1,\tfrac{3}{2}, \alpha+\tfrac{3}{2},-\tfrac{z^2}{4} \right )" |
---|
semanticFormula | "\StruveH{\alpha}@{z} = \frac{z^{\alpha+1}}{2^{\alpha} \sqrt{\cpi} \EulerGamma@{\alpha + \tfrac{3}{2}}} \genhyperF{1}{2}@{1}{\tfrac{3}{2}, \alpha + \tfrac{3}{2}}{- \tfrac{z^2}{4}}" |
---|
confidence | 0.8740850655136605 |
---|
translations | Mathematica | translation | "StruveH[\[Alpha], z] == Divide[(z)^(\[Alpha]+ 1),(2)^\[Alpha]*Sqrt[Pi]*Gamma[\[Alpha]+Divide[3,2]]]*HypergeometricPFQ[{1}, {Divide[3,2], \[Alpha]+Divide[3,2]}, -Divide[(z)^(2),4]]" |
---|
|
---|
Maple | translation | "StruveH(alpha, z) = ((z)^(alpha + 1))/((2)^(alpha)*sqrt(Pi)*GAMMA(alpha +(3)/(2)))*hypergeom([1], [(3)/(2), alpha +(3)/(2)], -((z)^(2))/(4))" |
---|
|
---|
|
---|
positions | |
---|
includes | "_{1}F_{2}" |
"\mathbf{K}_\alpha(x)" |
"\alpha" |
"\Gamma(z)" |
"\mathbf{H}_{\alpha}(x)" |
"\mathbf{L}_{\alpha}(x)" |
"\mathbf{H}_{\alpha}(z)" |
"Y_{\alpha}(x)" |
"\mathbf{M}_\alpha(x)" |
|
---|
isPartOf | |
---|
definiens | definition | "hypergeometric function" |
---|
score | 2 |
---|
|
|
definition | "Struve function" |
---|
score | 2 |
---|
|
definition | "gamma function" |
---|
score | 2 |
---|
|
|
---|
|
|
---|
|
id | 55 |
---|
pid | 106 |
---|
eid | "math.106.7" |
---|
title | "Hill differential equation" |
---|
formulae | id | "FORMULA_3a6745862e8f6ef2b93c343ad82b40c0" |
---|
formula | "f(t+p) = f(t)" |
---|
semanticFormula | "f(t+p) = f(t)" |
---|
confidence | 0 |
---|
translations | Mathematica | translation | "f[t + p] == f[t]" |
---|
|
---|
Maple | translation | "f(t + p) = f(t)" |
---|
|
---|
|
---|
positions | |
---|
includes | "f(t)" |
"t" |
"p" |
"f(t+\pi)=f(t)" |
|
---|
isPartOf | |
---|
definiens | definition | "function" |
---|
score | 2 |
---|
|
definition | "periodic function by minimal period" |
---|
score | 2 |
---|
|
|
---|
|
|
---|
|
id | 56 |
---|
pid | 108 |
---|
eid | "math.108.3" |
---|
title | "Anger function" |
---|
formulae | id | "FORMULA_014efde25f995ccd08168a36ec7ef86d" |
---|
formula | "\mathbf{J}_\nu(z)=\cos\frac{\pi\nu}{2}\sum_{k=0}^\infty\frac{(-1)^kz^{2k}}{4^k\Gamma\left(k+\frac{\nu}{2}+1\right)\Gamma\left(k-\frac{\nu}{2}+1\right)}+\sin\frac{\pi\nu}{2}\sum_{k=0}^\infty\frac{(-1)^kz^{2k+1}}{2^{2k+1}\Gamma\left(k+\frac{\nu}{2}+\frac{3}{2}\right)\Gamma\left(k-\frac{\nu}{2}+\frac{3}{2}\right)}" |
---|
semanticFormula | "\AngerJ{\nu}@{z} = \cos \frac{\cpi\nu}{2} \sum_{k=0}^\infty \frac{(-1)^k z^{2k}}{4^k\EulerGamma@{k+\frac{\nu}{2}+1}\EulerGamma@{k-\frac{\nu}{2}+1}}+\sin\frac{\cpi\nu}{2}\sum_{k=0}^\infty\frac{(-1)^k z^{2k+1}}{2^{2k+1}\EulerGamma@{k+\frac{\nu}{2}+\frac{3}{2}}\EulerGamma@{k-\frac{\nu}{2}+\frac{3}{2}}}" |
---|
confidence | 0.8648813564530858 |
---|
translations | Mathematica | translation | "AngerJ[\[Nu], z] == Cos[Divide[Pi*\[Nu],2]]*Sum[Divide[(- 1)^(k)* (z)^(2*k),(4)^(k)* Gamma[k +Divide[\[Nu],2]+ 1]*Gamma[k -Divide[\[Nu],2]+ 1]], {k, 0, Infinity}, GenerateConditions->None]+ Sin[Divide[Pi*\[Nu],2]]*Sum[Divide[(- 1)^(k)* (z)^(2*k + 1),(2)^(2*k + 1)* Gamma[k +Divide[\[Nu],2]+Divide[3,2]]*Gamma[k -Divide[\[Nu],2]+Divide[3,2]]], {k, 0, Infinity}, GenerateConditions->None]" |
---|
|
---|
Maple | translation | "AngerJ(nu, z) = cos((Pi*nu)/(2))*sum(((- 1)^(k)* (z)^(2*k))/((4)^(k)* GAMMA(k +(nu)/(2)+ 1)*GAMMA(k -(nu)/(2)+ 1)), k = 0..infinity)+ sin((Pi*nu)/(2))*sum(((- 1)^(k)* (z)^(2*k + 1))/((2)^(2*k + 1)* GAMMA(k +(nu)/(2)+(3)/(2))*GAMMA(k -(nu)/(2)+(3)/(2))), k = 0..infinity)" |
---|
|
---|
|
---|
positions | |
---|
includes | "J_{\nu}" |
"\mathbf{J}_{\nu}" |
"\nu" |
|
---|
isPartOf | |
---|
definiens | definition | "power series expansion" |
---|
score | 2 |
---|
|
definition | "Anger function" |
---|
score | 2 |
---|
|
definition | "Gamma function" |
---|
score | 2 |
---|
|
|
---|
|
|
---|
|
id | 57 |
---|
pid | 109 |
---|
eid | "math.109.27" |
---|
title | "Lamé function" |
---|
formulae | id | "FORMULA_7d20395e75eeb74df48a681897d9d727" |
---|
formula | "(\operatorname{Ec})^'_{2K} = (\operatorname{Ec})^'_0 = 0, \;\; (\operatorname{Es})^'_{2K} = (\operatorname{Es})^'_0 = 0" |
---|
semanticFormula | "(\operatorname{Ec})_{2K}^' =(\operatorname{Ec})_0^' = 0 ,(\operatorname{Es})_{2K}^' =(\operatorname{Es})_0^' = 0" |
---|
confidence | 0 |
---|
translations | |
---|
positions | |
---|
includes | "\operatorname{Ec}" |
"\operatorname{Es}" |
|
---|
isPartOf | |
---|
definiens | definition | "boundary condition" |
---|
score | 2 |
---|
|
definition | "ellipsoidal wave" |
---|
score | 2 |
---|
|
|
---|
|
|
---|
|
id | 58 |
---|
pid | 110 |
---|
eid | "math.110.1" |
---|
title | "Gauss–Hermite quadrature" |
---|
formulae | id | "FORMULA_cdf8d887d4b5ad1a7724773d8eef8fd2" |
---|
formula | "\int_{-\infty}^{+\infty} e^{-x^2} f(x)\,dx \approx \sum_{i=1}^n w_i f(x_i)" |
---|
semanticFormula | "\int_{-\infty}^{+\infty} \expe^{-x^2} f(x) \diff{x} \approx \sum_{i=1}^n w_i f(x_i)" |
---|
confidence | 0 |
---|
translations | |
---|
positions | |
---|
includes | "\int_{-\infty}^{+\infty} e^{-x^2} f(x)\,dx" |
"n" |
"x_{i}" |
"w_{i}" |
|
---|
isPartOf | |
---|
definiens | definition | "value of integral" |
---|
score | 2 |
---|
|
definition | "form of Gaussian quadrature" |
---|
score | 2 |
---|
|
definition | "Gauss -- Hermite quadrature" |
---|
score | 2 |
---|
|
definition | "Hermite polynomial" |
---|
score | 1 |
---|
|
definition | "associated weight" |
---|
score | 2 |
---|
|
|
---|
|
|
---|
|
id | 59 |
---|
pid | 111 |
---|
eid | "math.111.0" |
---|
title | "Askey–Wilson polynomials" |
---|
formulae | id | "FORMULA_cfe946a0547913234ac79d398f269607" |
---|
formula | "p_n(x;a,b,c,d|q) =(ab,ac,ad;q)_na^{-n}\;_{4}\phi_3 \left[\begin{matrix} q^{-n}&abcdq^{n-1}&ae^{i\theta}&ae^{-i\theta} \\ ab&ac&ad \end{matrix} ; q,q \right]" |
---|
semanticFormula | "\AskeyWilsonpolyp{n}@{x}{a}{b}{c}{d}{q} = \qmultiPochhammersym{ab , ac , ad}{q}{n} a^{-n} \qgenhyperphi{4}{3}@{q^{-n} , abcdq^{n-1} , a\expe^{\iunit\theta} , a\expe^{-\iunit\theta}}{ab , ac , ad}{q}{q}" |
---|
confidence | 0 |
---|
translations | Mathematica | translation | "p[n_, x_, a_, b_, c_, d_, q_] := Product[QPochhammer[Part[{a*b , a*c , a*d},i],q,n],{i,1,Length[{a*b , a*c , a*d}]}]*(a)^(- n)* QHypergeometricPFQ[{(q)^(- n), a*b*c*d*(q)^(n - 1), a*Exp[I*\[Theta]], a*Exp[- I*\[Theta]]},{a*b , a*c , a*d},q,q]" |
---|
|
---|
|
---|
positions | |
---|
includes | |
---|
isPartOf | |
---|
definiens | definition | "basic hypergeometric function" |
---|
score | 2 |
---|
|
definition | "q-Pochhammer symbol" |
---|
score | 2 |
---|
|
definition | "Askey–Wilson polynomials" |
---|
score | 2 |
---|
|
|
---|
|
|
---|
|
id | 60 |
---|
pid | 112 |
---|
eid | "math.112.0" |
---|
title | "Hahn polynomials" |
---|
formulae | id | "FORMULA_777007203448847310455e0b0eaaeb2c" |
---|
formula | "Q_n(x;\alpha,\beta,N)= {}_3F_2(-n,-x,n+\alpha+\beta+1;\alpha+1,-N+1;1)." |
---|
semanticFormula | "\HahnpolyQ{n}@{x}{\alpha}{\beta}{N} = \genhyperF{3}{2}@{- n , - x , n + \alpha + \beta + 1}{\alpha + 1 , - N + 1}{1}" |
---|
confidence | 0.8953028732079359 |
---|
translations | Mathematica | translation | "Q[n_, x_, \[Alpha]_, \[Beta]_, N_] := HypergeometricPFQ[{- n , - x , n + \[Alpha]+ \[Beta]+ 1}, {\[Alpha]+ 1 , - N + 1}, 1]" |
---|
|
---|
|
---|
positions | |
---|
includes | "R_{n}(x;\gamma,\delta,N)" |
"S_{n}(x;a,b,c)" |
|
---|
isPartOf | |
---|
definiens | definition | "Hahn polynomial" |
---|
score | 2 |
---|
|
definition | "basic hypergeometric function" |
---|
score | 2 |
---|
|
definition | "hypergeometric function" |
---|
score | 2 |
---|
|
|
---|
|
|
---|
|
id | 61 |
---|
pid | 113 |
---|
eid | "math.113.2" |
---|
title | "Charlier polynomials" |
---|
formulae | id | "FORMULA_b76bcf7237b989f6b5d90082fafa53f1" |
---|
formula | "\sum_{x=0}^\infty \frac{\mu^x}{x!} C_n(x; \mu)C_m(x; \mu)=\mu^{-n} e^\mu n! \delta_{nm}, \quad \mu>0" |
---|
semanticFormula | "\sum_{x=0}^\infty \frac{\mu^x}{x!} \CharlierpolyC{n}@{x}{\mu} \CharlierpolyC{m}@{x}{\mu} = \mu^{-n} \expe^\mu n! \delta_{nm} , \quad \mu > 0" |
---|
confidence | 0 |
---|
translations | Mathematica | translation | "Sum[Divide[\[Mu]^x, x!] * HypergeometricPFQ[{-n, -x}, {}, -Divide[1,\[Mu]]] * HypergeometricPFQ[{-m, -x}, {}, -Divide[1,\[Mu]]], {x, 0, Infinity}] == \[Mu]^(-n)*Exp[\[Mu]]*n!*Subscript[\[Delta], n, m]" |
---|
|
---|
|
---|
positions | |
---|
includes | |
---|
isPartOf | |
---|
definiens | definition | "orthogonality relation" |
---|
score | 2 |
---|
|
definition | "Charlier polynomial" |
---|
score | 2 |
---|
|
|
---|
|
|
---|
|
id | 62 |
---|
pid | 114 |
---|
eid | "math.114.0" |
---|
title | "Q-Racah polynomials" |
---|
formulae | id | "FORMULA_51c23bddc19530680328afbf28235b90" |
---|
formula | "p_n(q^{-x}+q^{x+1}cd;a,b,c,d;q) = {}_4\phi_3\left[\begin{matrix} q^{-n} &abq^{n+1}&q^{-x}&q^{x+1}cd\\aq&bdq&cq\\ \end{matrix};q;q\right]" |
---|
semanticFormula | "\qRacahpolyR{n}@{q^{-x} + q^{x+1} cd}{a}{b}{c}{d}{q} = \qgenhyperphi{4}{3}@{q^{-n}, abq^{n+1}, q^{-x}, q^{x+1}cd}{aq , bdq , cq}{q}{q}" |
---|
confidence | 0 |
---|
translations | |
---|
positions | |
---|
includes | |
---|
isPartOf | |
---|
definiens | definition | "term of basic hypergeometric function" |
---|
score | 2 |
---|
|
|
---|
|
|
---|
|
id | 63 |
---|
pid | 115 |
---|
eid | "math.115.0" |
---|
title | "Q-Charlier polynomials" |
---|
formulae | id | "FORMULA_925d68ff3ddf733a69ec9936dfede5d6" |
---|
formula | "\displaystyle c_n(q^{-x};a;q) = {}_2\phi_1(q^{-n},q^{-x};0;q,-q^{n+1}/a)" |
---|
semanticFormula | "c_n(q^{-x} ; a ; q) = \qgenhyperphi{2}{1}@{q^{-n} , q^{-x}}{0}{q}{- q^{n+1} / a}" |
---|
confidence | 0.5776294951318733 |
---|
translations | |
---|
positions | |
---|
includes | |
---|
isPartOf | |
---|
definiens | definition | "q-Charlier polynomial" |
---|
score | 2 |
---|
|
definition | "term of the basic hypergeometric function" |
---|
score | 2 |
---|
|
|
---|
|
|
---|
|
id | 64 |
---|
pid | 116 |
---|
eid | "math.116.0" |
---|
title | "Meixner polynomials" |
---|
formulae | id | "FORMULA_29a1f82de004c5721c8dfc5dd1dc5b98" |
---|
formula | "M_n(x,\beta,\gamma) = \sum_{k=0}^n (-1)^k{n \choose k}{x\choose k}k!(x+\beta)_{n-k}\gamma^{-k}" |
---|
semanticFormula | "\MeixnerpolyM{n}@{x}{\beta}{\gamma} = \sum_{k=0}^n(- 1)^k{n \choose k}{x\choose k} k! \Pochhammersym{x + \beta}{n-k} \gamma^{-k}" |
---|
confidence | 0.8953028732079359 |
---|
translations | Mathematica | translation | "M[n_, x_, \[Beta]_, \[Gamma]_] := Sum[(- 1)^(k)*Binomial[n,k]*Binomial[x,k]*(k)!*Pochhammer[x + \[Beta], n - k]*\[Gamma]^(- k), {k, 0, n}, GenerateConditions->None]" |
---|
|
---|
|
---|
positions | |
---|
includes | |
---|
isPartOf | |
---|
definiens | definition | "Meixner polynomial" |
---|
score | 2 |
---|
|
definition | "Pochhammer symbol" |
---|
score | 1 |
---|
|
definition | "term of binomial coefficient" |
---|
score | 1 |
---|
|
|
---|
|
|
---|
|
id | 65 |
---|
pid | 117 |
---|
eid | "math.117.19" |
---|
title | "Appell series" |
---|
formulae | id | "FORMULA_85014aaf0c7c1f4fe433115e796a03db" |
---|
formula | "x(1-x) \frac {\partial^2F_1(x,y)} {\partial x^2} + y(1-x) \frac {\partial^2F_1(x,y)} {\partial x \partial y} + [c - (a+b_1+1) x] \frac {\partial F_1(x,y)} {\partial x} - b_1 y \frac {\partial F_1(x,y)} {\partial y} - a b_1 F_1(x,y) = 0" |
---|
semanticFormula | "x(1-x) \deriv[2]{\AppellF{1}@{a}{b_1}{b_2}{\gamma}{x}{y}}{x} + y(1-x) \frac{\pdiff[2]{\AppellF{1}@{a}{b_1}{b_2}{\gamma}{x}{y}}}{\pdiff{x}\pdiff{y}} + [c - (a+b_1+1) x] \deriv[1]{\AppellF{1}@{a}{b_1}{b_2}{\gamma}{x}{y}}{x} - b_1 y \deriv[1]{\AppellF{1}@{a}{b_1}{b_2}{\gamma}{x}{y}}{y} - a b_1 \AppellF{1}@{a}{b_1}{b_2}{\gamma}{x}{y} = 0" |
---|
confidence | 0 |
---|
translations | Mathematica | translation | "x*(1-x) * D[AppellF[a, Subscript[b, 1], Subscript[b, 2], \[Gamma], x, y], {x,2}] + y*(1-x) * D[AppellF[a, Subscript[b, 1], Subscript[b, 2], \[Gamma], x, y], x, y] + (c - (a+Subscript[b, 1]+1)*x) * D[AppellF[a, Subscript[b, 1], Subscript[b, 2], \[Gamma], x, y], x] - Subscript[b,1] * y * D[AppellF[a, Subscript[b, 1], Subscript[b, 2], \[Gamma], x, y], y] - a*Subscript[b,1]*AppellF[a, Subscript[b, 1], Subscript[b, 2], \[Gamma], x, y] == 0" |
---|
|
---|
|
---|
positions | |
---|
includes | "y" |
"x" |
"F_{1}" |
"F" |
"_{1}F_{1}" |
|
---|
isPartOf | |
---|
definiens | |
definition | "partial differential equation" |
---|
score | 2 |
---|
|
definition | "system of differential equation" |
---|
score | 1 |
---|
|
definition | "system of second-order differential equation" |
---|
score | 2 |
---|
|
definition | "Appell series" |
---|
score | 2 |
---|
|
|
---|
|
|
---|
|
id | 66 |
---|
pid | 118 |
---|
eid | "math.118.0" |
---|
title | "Theta function of a lattice" |
---|
formulae | id | "FORMULA_39f4baaa3543f22706b6f7701518f3eb" |
---|
formula | "\Theta_\Lambda(\tau) = \sum_{x\in\Lambda}e^{i\pi\tau\|x\|^2}\qquad\mathrm{Im}\,\tau > 0" |
---|
semanticFormula | "\Theta_\Lambda(\tau) = \sum_{x\in\Lambda} \expe^{\iunit \cpi \tau \|x \|^2} \qquad \imagpart \tau > 0" |
---|
confidence | 0 |
---|
translations | Mathematica | translation | "\[CapitalTheta][\[CapitalLambda]_, \[Tau]_] := Sum[Exp[I*Pi*\[Tau]*(Norm[x])^(2)], {x, \[CapitalLambda]}]" |
---|
|
---|
|
---|
positions | |
---|
includes | |
---|
isPartOf | |
---|
definiens | definition | "theta function" |
---|
score | 2 |
---|
|
definition | "lattice" |
---|
score | 1 |
---|
|
definition | "Theta function of a lattice" |
---|
score | 1 |
---|
|
|
---|
|
|
---|
|
id | 67 |
---|
pid | 119 |
---|
eid | "math.119.0" |
---|
title | "Heine–Stieltjes polynomials" |
---|
formulae | id | "FORMULA_d673cd2334542e8f83f099798c4027b3" |
---|
formula | "\frac{d^2 S}{dz^2}+\left(\sum _{j=1}^N \frac{\gamma _j}{z - a_j} \right) \frac{dS}{dz} + \frac{V(z)}{\prod _{j=1}^N (z - a_j)}S = 0" |
---|
semanticFormula | "\deriv [2]{S}{z} +(\sum_{j=1}^N \frac{\gamma _j}{z - a_j}) \deriv[]{S}{z} + \frac{V(z)}{\prod _{j=1}^N (z - a_j)} S = 0" |
---|
confidence | 0 |
---|
translations | |
---|
positions | |
---|
includes | |
---|
isPartOf | |
---|
definiens | |
definition | "Fuchsian equation" |
---|
score | 2 |
---|
|
definition | "polynomial" |
---|
score | 1 |
---|
|
|
definition | "Edward Burr Van Vleck" |
---|
score | 0 |
---|
|
|
definition | "polynomial solution" |
---|
score | 1 |
---|
|
definition | "Stieltjes polynomial" |
---|
score | 1 |
---|
|
definition | "Van Vleck polynomial" |
---|
score | 1 |
---|
|
|
---|
|
|
---|
|
id | 68 |
---|
pid | 120 |
---|
eid | "math.120.0" |
---|
title | "Stieltjes–Wigert polynomials" |
---|
formulae | id | "FORMULA_583d3b9e00bbd73091b01f368d1a82c7" |
---|
formula | "w(x) = \frac{k}{\sqrt{\pi}} x^{-1/2} \exp(-k^2\log^2 x)" |
---|
semanticFormula | "w(x) = \frac{k}{\sqrt{\cpi}} x^{-1/2} \exp(- k^2 \log^2 x)" |
---|
confidence | 0 |
---|
translations | Mathematica | translation | "w[x_] := Divide[k,Sqrt[Pi]]*(x)^(- 1/2)* Exp[- (k)^(2)* (Log[x])^(2)]" |
---|
|
---|
Maple | translation | "w := (x) -> (k)/(sqrt(Pi))*(x)^(- 1/2)* exp(- (k)^(2)* (log(x))^(2))" |
---|
|
---|
|
---|
positions | |
---|
includes | "\frac{k}{\sqrt{\pi}} x^{-1/2} \exp \left(-k^2 \log^2 x \right)" |
|
---|
isPartOf | |
---|
definiens | definition | "weight function" |
---|
score | 2 |
---|
|
definition | "positive real line" |
---|
score | 0 |
---|
|
definition | "basic Askey scheme" |
---|
score | 1 |
---|
|
definition | "family of basic hypergeometric orthogonal polynomial" |
---|
score | 1 |
---|
|
definition | "mathematics" |
---|
score | 0 |
---|
|
definition | "Stieltjes -- Wigert polynomial" |
---|
score | 2 |
---|
|
definition | "Thomas Jan Stieltjes" |
---|
score | 0 |
---|
|
definition | "Carl Severin Wigert" |
---|
score | 0 |
---|
|
definition | "example of such weight function" |
---|
score | 0 |
---|
|
|
---|
|
|
---|
|
id | 69 |
---|
pid | 121 |
---|
eid | "math.121.23" |
---|
title | "Modular lambda function" |
---|
formulae | id | "FORMULA_4e5334aa6f5fa551b0718a2372816061" |
---|
formula | "y^2=x(x-1)(x-\lambda)" |
---|
semanticFormula | "y^2=x(x-1)(x-\lambda)" |
---|
confidence | 0 |
---|
translations | Mathematica | translation | "(y)^(2) == x*(x - 1)*(x - \[Lambda])" |
---|
|
---|
Maple | translation | "(y)^(2) = x*(x - 1)*(x - lambda)" |
---|
|
---|
|
---|
positions | |
---|
includes | |
---|
isPartOf | |
---|
definiens | definition | "elliptic curve of Legendre form" |
---|
score | 2 |
---|
|
definition | "relation to the j-invariant" |
---|
score | 1 |
---|
|
definition | "relation to the j-invariant" |
---|
score | 1 |
---|
|
|
---|
|
|
---|
|
id | 70 |
---|
pid | 122 |
---|
eid | "math.122.3" |
---|
title | "Meixner–Pollaczek polynomials" |
---|
formulae | id | "FORMULA_96d19b4b504f801548c69064d662043b" |
---|
formula | "P_1^{(\lambda)}(x;\phi)=2(\lambda\cos\phi + x\sin\phi)" |
---|
semanticFormula | "\MeixnerPollaczekpolyP{\lambda}{1}@{x}{\phi} = 2(\lambda \cos \phi + x \sin \phi)" |
---|
confidence | 0.8953028732079359 |
---|
translations | |
---|
positions | |
---|
includes | "P_{m}^{(\lambda)}(x;\varphi)" |
|
---|
isPartOf | |
---|
definiens | definition | "first few Meixner -- Pollaczek polynomial" |
---|
score | 2 |
---|
|
|
---|
|
|
---|
|
id | 71 |
---|
pid | 123 |
---|
eid | "math.123.0" |
---|
title | "Jacobi polynomials" |
---|
formulae | id | "FORMULA_c8b5b9184e45bca39744427c45693115" |
---|
formula | "P_n^{(\alpha,\beta)}(z)=\frac{(\alpha+1)_n}{n!}\,{}_2F_1\left(-n,1+\alpha+\beta+n;\alpha+1;\tfrac{1}{2}(1-z)\right)" |
---|
semanticFormula | "\JacobipolyP{\alpha}{\beta}{n}@{z} = \frac{\Pochhammersym{\alpha + 1}{n}}{n!} \genhyperF{2}{1}@{- n , 1 + \alpha + \beta + n}{\alpha + 1}{\tfrac{1}{2}(1 - z)}" |
---|
confidence | 0.7595006538205181 |
---|
translations | Mathematica | translation | "JacobiP[n, \[Alpha], \[Beta], z] == Divide[Pochhammer[\[Alpha]+ 1, n],(n)!]*HypergeometricPFQ[{- n , 1 + \[Alpha]+ \[Beta]+ n}, {\[Alpha]+ 1}, Divide[1,2]*(1 - z)]" |
---|
|
---|
Maple | translation | "JacobiP(n, alpha, beta, z) = (pochhammer(alpha + 1, n))/(factorial(n))*hypergeom([- n , 1 + alpha + beta + n], [alpha + 1], (1)/(2)*(1 - z))" |
---|
|
---|
|
---|
positions | |
---|
includes | "P_{n}^{(\alpha, \beta)}(x)" |
"(\alpha+1)_n" |
"n" |
"n + \alpha + \beta" |
"P_{n}^{(\alpha, \beta)}" |
"\alpha,\beta" |
"z" |
|
---|
isPartOf | |
---|
definiens | definition | "Pochhammer 's symbol" |
---|
score | 2 |
---|
|
definition | "hypergeometric function" |
---|
score | 2 |
---|
|
definition | "Jacobi polynomial" |
---|
score | 2 |
---|
|
|
---|
|
|
---|
|
id | 72 |
---|
pid | 124 |
---|
eid | "math.124.0" |
---|
title | "Continuous dual Hahn polynomials" |
---|
formulae | id | "FORMULA_b0d448ba925dc6b2bf2ce32a1253dee4" |
---|
formula | "S_n(x^2;a,b,c)= {}_3F_2(-n,a+ix,a-ix;a+b,a+c;1)." |
---|
semanticFormula | "\contdualHahnpolyS{n}@{x^2}{a}{b}{c} = \genhyperF{3}{2}@{- n , a + \iunit x , a - \iunit x}{a + b , a + c}{1}" |
---|
confidence | 0.7132263353695951 |
---|
translations | |
---|
positions | |
---|
includes | "R_{n}(x;\gamma,\delta,N)" |
|
---|
isPartOf | |
---|
definiens | definition | "hypergeometric function" |
---|
score | 1 |
---|
|
definition | "dual Hahn polynomial" |
---|
score | 1 |
---|
|
definition | "continuous Hahn polynomial" |
---|
score | 1 |
---|
|
definition | "continuous dual Hahn polynomial" |
---|
score | 2 |
---|
|
|
---|
|
|
---|
|
id | 73 |
---|
pid | 125 |
---|
eid | "math.125.15" |
---|
title | "Continuous Hahn polynomials" |
---|
formulae | id | "FORMULA_ff971744100fef3b34b2c93b6adc3efb" |
---|
formula | "P_n^{(\alpha,\beta)}=\lim_{t\to\infty}t^{-n}p_n\left(\tfrac12xt; \tfrac12(\alpha+1-it), \tfrac12(\beta+1+it), \tfrac12(\alpha+1+it), \tfrac12(\beta+1-it)\right)" |
---|
semanticFormula | "\JacobipolyP{\alpha}{\beta}{n}@{x} = \lim_{t\to\infty} t^{-n} \contHahnpolyp{n}@{\tfrac12 xt}{\tfrac12(\alpha + 1 - \iunit t)}{\tfrac12(\beta + 1 + \iunit t)}{\tfrac12(\alpha + 1 + \iunit t)}{\tfrac12(\beta + 1 - \iunit t)}" |
---|
confidence | 0.9041995034970904 |
---|
translations | Mathematica | translation | "JacobiP[n, \[Alpha], \[Beta], x] == Limit[(t)^(- n)* I^(n)*Divide[Pochhammer[Divide[1,2]*(\[Alpha]+ 1 - I*t) + Divide[1,2]*(\[Alpha]+ 1 + I*t), n]*Pochhammer[Divide[1,2]*(\[Alpha]+ 1 - I*t) + Divide[1,2]*(\[Beta]+ 1 - I*t), n], (n)!] * HypergeometricPFQ[{-(n), n + 2*Re[Divide[1,2]*(\[Alpha]+ 1 - I*t) + Divide[1,2]*(\[Beta]+ 1 + I*t)] - 1, Divide[1,2]*(\[Alpha]+ 1 - I*t) + I*(Divide[1,2]*x*t)}, {Divide[1,2]*(\[Alpha]+ 1 - I*t) + Divide[1,2]*(\[Alpha]+ 1 + I*t), Divide[1,2]*(\[Alpha]+ 1 - I*t) + Divide[1,2]*(\[Beta]+ 1 - I*t)}, 1], t -> Infinity, GenerateConditions->None]" |
---|
|
---|
|
---|
positions | |
---|
includes | "p_{n}(x;a,b,c,d)" |
"F_{n}" |
"P_{n}^{(\alpha,\beta)}" |
|
---|
isPartOf | |
---|
definiens | definition | "case of the continuous Hahn polynomial" |
---|
score | 1 |
---|
|
definition | "Jacobi polynomial" |
---|
score | 2 |
---|
|
definition | "continuous Hahn polynomial" |
---|
score | 2 |
---|
|
|
---|
|
|
---|
|
id | 74 |
---|
pid | 126 |
---|
eid | "math.126.7" |
---|
title | "Dual Hahn polynomials" |
---|
formulae | id | "FORMULA_657ec9a2e460e61adc6857260291be56" |
---|
formula | "\sum^{b-1}_{s=a}w_n^{(c)}(s,a,b)w_m^{(c)}(s,a,b)\rho(s)[\Delta x(s-\frac{1}{2}) ]=\delta_{nm}d_n^2" |
---|
semanticFormula | "\sum_{s=a}^{b-1} \dualHahnpolyR{n}@{c}{s}{a}{b} \dualHahnpolyR{m}@{c}{s}{a}{b} \rho(s) [\Delta x(s - \frac{1}{2})] = \delta_{nm} d_n^2" |
---|
confidence | 0 |
---|
translations | |
---|
positions | |
---|
includes | |
---|
isPartOf | |
---|
definiens | definition | "Dual Hahn polynomial" |
---|
score | 2 |
---|
|
|
---|
|
|
---|
|
id | 75 |
---|
pid | 127 |
---|
eid | "math.127.0" |
---|
title | "Continuous q-Hahn polynomials" |
---|
formulae | id | "FORMULA_67e28846328978f4e08bb6b69fe6c549" |
---|
formula | "p_n(x;a,b,c|q)=a^{-n}e^{-inu}(abe^{2iu},ac,ad;q)_n*_4\Phi_3(q^{-n},abcdq^{n-1},ae^{i{(t+2u)}},ae^{-it};abe^{2iu},ac,ad;q;q)" |
---|
semanticFormula | "p_n(x ; a , b , c|q) = a^{-n} \expe^{-\iunit nu} \qmultiPochhammersym{ab\expe^{2\iunit u} , ac , ad}{q}{n} * \qgenhyperphi{4}{3}@{q^{-n} , abcdq^{n-1} , a\expe^{\iunit{(t+2u)}} , a\expe^{-\iunit t}}{ab\expe^{2\iunit u} , ac , ad}{q}{q}" |
---|
confidence | 0.8662724998444776 |
---|
translations | Mathematica | translation | "p[n_, x_, a_, b_, c_, q_] := (a)^(- n)* Exp[- I*\[Nu]]*Product[QPochhammer[Part[{a*b*Exp[2*I*u], a*c , a*d},i],q,n],{i,1,Length[{a*b*Exp[2*I*u], a*c , a*d}]}]* QHypergeometricPFQ[{(q)^(- n), a*b*c*d*(q)^(n - 1), a*Exp[I*(t + 2*u)], a*Exp[- I*t]},{a*b*Exp[2*I*u], a*c , a*d},q,q]" |
---|
|
---|
|
---|
positions | |
---|
includes | |
---|
isPartOf | |
---|
definiens | definition | "polynomial" |
---|
score | 1 |
---|
|
definition | "term of basic hypergeometric function" |
---|
score | 1 |
---|
|
definition | "Pochhammer symbol" |
---|
score | 1 |
---|
|
definition | "continuous FORMULA_7694f4a66316e53c8cdd9d9954bd611d - Hahn polynomial" |
---|
score | 2 |
---|
|
definition | "q - Pochhammer symbol" |
---|
score | 2 |
---|
|
|
---|
|
|
---|
|
id | 76 |
---|
pid | 128 |
---|
eid | "math.128.0" |
---|
title | "Continuous dual q-Hahn polynomials" |
---|
formulae | id | "FORMULA_95daf919f18506606090e49a38d1c1a6" |
---|
formula | "p_n(x;a,b,c\mid q)=\frac{(ab,ac;q)_n}{a^n}\cdot {_3\Phi_2}(q^-n,ae^{i\theta},ae^{-i\theta}; ab, ac \mid q;q)" |
---|
semanticFormula | "p_n(x ; a , b , c \mid q) = \frac{\qmultiPochhammersym{ab , ac}{q}{n}}{a^n} \cdot \qgenhyperphi{3}{2}@{q^- n , ae^{\iunit \theta} , ae^{- \iunit \theta}}{ab , ac}{q}{q}" |
---|
confidence | 0.8662724998444776 |
---|
translations | Mathematica | translation | "p[n_, x_, a_, b_, c_, q_] := Divide[Product[QPochhammer[Part[{a*b , a*c},i],q,n],{i,1,Length[{a*b , a*c}]}],(a)^(n)] * QHypergeometricPFQ[{(q)^(-)* n , a*(e)^(I*\[Theta]), a*(e)^(- I*\[Theta])},{a*b , a*c},q,q]" |
---|
|
---|
|
---|
positions | |
---|
includes | |
---|
isPartOf | |
---|
definiens | definition | "polynomial" |
---|
score | 1 |
---|
|
definition | "term of basic hypergeometric function" |
---|
score | 2 |
---|
|
definition | "Pochhammer symbol" |
---|
score | 1 |
---|
|
definition | "continuous dual FORMULA_7694f4a66316e53c8cdd9d9954bd611d - Hahn polynomial" |
---|
score | 2 |
---|
|
|
---|
|
|
---|
|
id | 77 |
---|
pid | 129 |
---|
eid | "math.129.0" |
---|
title | "Q-Hahn polynomials" |
---|
formulae | id | "FORMULA_b3a9ac90714e1e705d2a88b30e79cca0" |
---|
formula | "Q_n(x;a,b,N;q)=\;_{3}\phi_2\left[\begin{matrix} q^-n & abq^n+1 & x \\ aq & q^-N \end{matrix} ; q,q \right]" |
---|
semanticFormula | "\qHahnpolyQ{n}@{x}{a}{b}{N}{q} = \qgenhyperphi{3}{2}@{q^-n , abq^n+1 , x}{aq , q^-N}{q}{q}" |
---|
confidence | 0 |
---|
translations | Mathematica | translation | "Q[n_, x_, a_, b_, N_, q_] := QHypergeometricPFQ[{(q)^(-)* n , a*b*(q)^(n)+ 1 , x},{a*q , (q)^(-)* N},q,q]" |
---|
|
---|
|
---|
positions | |
---|
includes | |
---|
isPartOf | |
---|
definiens | definition | "q - Hahn polynomial" |
---|
score | 2 |
---|
|
definition | "polynomial" |
---|
score | 1 |
---|
|
definition | "term of basic hypergeometric function" |
---|
score | 2 |
---|
|
definition | "Pochhammer symbol" |
---|
score | 0 |
---|
|
|
---|
|
|
---|
|
id | 78 |
---|
pid | 131 |
---|
eid | "math.131.0" |
---|
title | "Al-Salam–Chihara polynomials" |
---|
formulae | id | "FORMULA_52a07ce46212cbc2298415c5fca6e075" |
---|
formula | "x=" |
---|
semanticFormula | "x=\cos@{\theta}" |
---|
confidence | 0 |
---|
translations | Mathematica | translation | "x = Cos[\[Theta]]" |
---|
|
---|
Maple | translation | "x = cos(theta)" |
---|
|
---|
|
---|
positions | |
---|
includes | |
---|
isPartOf | |
---|
definiens | definition | "cosine function" |
---|
score | 2 |
---|
|
definition | "substitution" |
---|
score | 2 |
---|
|
|
---|
|
|
---|
|
id | 79 |
---|
pid | 132 |
---|
eid | "math.132.7" |
---|
title | "Orthogonal polynomials on the unit circle" |
---|
formulae | id | "FORMULA_f2d41903301a99a3fade5f2f49450694" |
---|
formula | "\Phi_n^*(z)=z^n\overline{\Phi_n(1/\overline{z})}" |
---|
semanticFormula | "\Phi_n^*(z) = z^n{\conj{\Phi_n(1 / \conj{z})}}" |
---|
confidence | 0.7579553437219001 |
---|
translations | Mathematica | translation | "\[CapitalPhi]\[Prima][n_, z_] := z^n*Conjugate[\[CapitalPhi][n, Divide[1, Conjugate[z]]]]" |
---|
|
---|
|
---|
positions | |
---|
includes | "\Phi_n(z)" |
"z^n" |
"\alpha_n" |
|
---|
isPartOf | |
---|
definiens | definition | "polynomial" |
---|
score | 2 |
---|
|
|
---|
|
|
---|
|
id | 80 |
---|
pid | 133 |
---|
eid | "math.133.8" |
---|
title | "Orthogonal polynomials" |
---|
formulae | id | "FORMULA_c0641714ec593f58211623652c4a34f0" |
---|
formula | "P_n(x) = c_n \, \det \begin{bmatrix}m_0 & m_1 & m_2 &\cdots & m_n \\m_1 & m_2 & m_3 &\cdots & m_{n+1} \\&&\vdots&& \vdots \\m_{n-1} &m_n& m_{n+1} &\cdots &m_{2n-1}\\1 & x & x^2 & \cdots & x^n\end{bmatrix}" |
---|
semanticFormula | "P_n(x) = c_n \det \begin{bmatrix}m_0 & m_1 & m_2 &\cdots & m_n \\m_1 & m_2 & m_3 &\cdots & m_{n+1} \\&&\vdots&& \vdots \\m_{n-1} &m_n& m_{n+1} &\cdots &m_{2n-1}\\1 & x & x^2 & \cdots & x^n\end{bmatrix}" |
---|
confidence | 0 |
---|
translations | |
---|
positions | |
---|
includes | |
---|
isPartOf | |
---|
definiens | definition | "constant" |
---|
score | 0 |
---|
|
definition | "normalisation" |
---|
score | 0 |
---|
|
definition | "orthogonal polynomial" |
---|
score | 2 |
---|
|
definition | "term of the moment" |
---|
score | 0 |
---|
|
|
---|
|
|
---|
|
id | 81 |
---|
pid | 134 |
---|
eid | "math.134.0" |
---|
title | "Little q-Jacobi polynomials" |
---|
formulae | id | "FORMULA_c492265e4cd4beeeb776dad843dc1f73" |
---|
formula | "\displaystyle p_n(x;a,b;q) = {}_2\phi_1(q^{-n},abq^{n+1};aq;q,xq)" |
---|
semanticFormula | "\littleqJacobipolyp{n}@{x}{a}{b}{q} = \qgenhyperphi{2}{1}@{q^{-n} , abq^{n+1}}{aq}{q}{xq}" |
---|
confidence | 0.7229065246531701 |
---|
translations | Mathematica | translation | "p[n_, x_, a_, b_, q_] := QHypergeometricPFQ[{(q)^(- n), a*b*(q)^(n + 1)},{a*q},q,x*q]" |
---|
|
---|
|
---|
positions | |
---|
includes | |
---|
isPartOf | |
---|
definiens | definition | "Jacobi polynomial" |
---|
score | 1 |
---|
|
definition | "term of basic hypergeometric function" |
---|
score | 2 |
---|
|
definition | "Pochhammer symbol" |
---|
score | 0 |
---|
|
definition | "little q - Jacobi polynomial" |
---|
score | 2 |
---|
|
|
---|
|
|
---|
|
id | 82 |
---|
pid | 135 |
---|
eid | "math.135.0" |
---|
title | "Big q-Jacobi polynomials" |
---|
formulae | id | "FORMULA_0680f701a101288f89487a7a3fabefb1" |
---|
formula | "\displaystyle P_n(x;a,b,c;q)={}_3\phi_2(q^{-n},abq^{n+1},x;aq,cq;q,q)" |
---|
semanticFormula | "\bigqJacobipolyP{n}@{x}{a}{b}{c}{q} = \qgenhyperphi{3}{2}@{q^{-n} , abq^{n+1} , x}{aq , cq}{q}{q}" |
---|
confidence | 0.7424814142326033 |
---|
translations | Mathematica | translation | "p[n_, x_, a_, b_, c_, q_] := QHypergeometricPFQ[{(q)^(- n), a*b*(q)^(n + 1), x},{a*q , c*q},q,q]" |
---|
|
---|
|
---|
positions | |
---|
includes | |
---|
isPartOf | |
---|
definiens | definition | "polynomial" |
---|
score | 1 |
---|
|
definition | "term of basic hypergeometric function" |
---|
score | 2 |
---|
|
definition | "big q - Jacobi polynomial" |
---|
score | 2 |
---|
|
|
---|
|
|
---|
|
id | 83 |
---|
pid | 137 |
---|
eid | "math.137.0" |
---|
title | "Big q-Laguerre polynomials" |
---|
formulae | id | "FORMULA_aa5a6972c7e8327e316eddc8fd8e9b08" |
---|
formula | "P_n(x;a,b;q)=\frac{1}{(b^{-1}*q^{-n};q,n)}*_2\Phi_1(q^{-n},aqx^{-1};aq|q;\frac{x}{b})" |
---|
semanticFormula | "P_n(x;a,b;q) =\frac{1}{\qmultiPochhammersym{b^{-1}*q^{-n}}{q}{n}} * \qgenhyperphi{2}{1}@{q^{-n},aqx^{-1}}{aq}{q}{\frac{x}{b}}" |
---|
confidence | 0 |
---|
translations | Mathematica | translation | "P[n_, x_, a_, b_, q_] := Divide[1,Product[QPochhammer[Part[{(b)^(- 1)* (q)^(- n)},i],q,n],{i,1,Length[{(b)^(- 1)* (q)^(- n)}]}]]* QHypergeometricPFQ[{(q)^(- n), a*q*(x)^(- 1)},{a*q},q,Divide[x,b]]" |
---|
|
---|
|
---|
positions | |
---|
includes | |
---|
isPartOf | |
---|
definiens | definition | "polynomial" |
---|
score | 1 |
---|
|
definition | "term of basic hypergeometric function" |
---|
score | 1 |
---|
|
definition | "Pochhammer symbol" |
---|
score | 1 |
---|
|
definition | "q - Pochhammer symbol" |
---|
score | 1 |
---|
|
definition | "big q - Laguerre polynomial" |
---|
score | 2 |
---|
|
|
---|
|
|
---|
|
id | 84 |
---|
pid | 138 |
---|
eid | "math.138.0" |
---|
title | "Dual q-Krawtchouk polynomials" |
---|
formulae | id | "FORMULA_9221dfda453868628eb8bbcd2d414fdf" |
---|
formula | "K_n(\lambda(x);c,N|q)=_3\Phi_2(q^{-n},q^{-x},cq^{x-N};q^{-N},0|q;q)" |
---|
semanticFormula | "K_n(\lambda(x);c,N|q) = \qgenhyperphi{3}{2}@{q^{-n},q^{-x},cq^{x-N}}{q^{-N},0}{q}{q}" |
---|
confidence | 0 |
---|
translations | |
---|
positions | |
---|
includes | |
---|
isPartOf | |
---|
definiens | definition | "polynomial" |
---|
score | 1 |
---|
|
definition | "term of basic hypergeometric function" |
---|
score | 2 |
---|
|
definition | "Pochhammer symbol" |
---|
score | 0 |
---|
|
definition | "dual q - Krawtchouk polynomial" |
---|
score | 2 |
---|
|
|
---|
|
|
---|
|
id | 85 |
---|
pid | 139 |
---|
eid | "math.139.0" |
---|
title | "Continuous q-Laguerre polynomials" |
---|
formulae | id | "FORMULA_8c9e3af3c57272f3a6ddabba68ab4d3e" |
---|
formula | "P_{n}^{(\alpha)}(x|q)=\frac{(q^\alpha+1;q)_{n}}{(q;q)_{n}}" |
---|
semanticFormula | "P_{n}^{(\alpha)}(x|q) = \frac{\qmultiPochhammersym{q^\alpha+1}{q}{n}}{\qPochhammer{q}{q}{n}} \qgenhyperphi{3}{2}@{q^{-n},q^{\alpha/2+1/4}\expe^{\iunit\theta},q^{\alpha/2+1/4}*\expe^{-\iunit\theta}}{q^{\alpha+1},0}{q}{q}" |
---|
confidence | 0 |
---|
translations | Mathematica | translation | "P[n_, \[Alpha]_, x_, q_] := Divide[Product[QPochhammer[Part[{(q)^\[Alpha]+ 1},i],q,n],{i,1,Length[{(q)^\[Alpha]+ 1}]}],QPochhammer[q, q, n]]*QHypergeometricPFQ[{(q)^(- n), (q)^(\[Alpha]/2 + 1/4)* Exp[I*\[Theta]], (q)^(\[Alpha]/2 + 1/4)* Exp[- I*\[Theta]]},{(q)^(\[Alpha]+ 1), 0},q,q]" |
---|
|
---|
|
---|
positions | |
---|
includes | |
---|
isPartOf | |
---|
definiens | definition | "continuous q - Laguerre polynomial" |
---|
score | 2 |
---|
|
definition | "family of basic hypergeometric orthogonal polynomial" |
---|
score | 2 |
---|
|
definition | "Pochhammer symbol" |
---|
score | 2 |
---|
|
|
---|
|
|
---|
|
id | 86 |
---|
pid | 142 |
---|
eid | "math.142.0" |
---|
title | "Little q-Laguerre polynomials" |
---|
formulae | id | "FORMULA_4e548bca196e13d5af0eaadf2ea725d1" |
---|
formula | "\displaystyle p_n(x;a|q) = {}_2\phi_1(q^{-n},0;aq;q,qx) = \frac{1}{(a^{-1}q^{-n};q)_n}{}_2\phi_0(q^{-n},x^{-1};;q,x/a)" |
---|
semanticFormula | "p_n(x ; a|q) = \qgenhyperphi{2}{1}@{q^{-n} , 0}{aq}{q}{qx} = \frac{1}{\qmultiPochhammersym{a^{-1} q^{-n}}{q}{n}} \qgenhyperphi{2}{0}@{q^{-n} , x^{-1}}{}{q}{x/a}" |
---|
confidence | 0.7219509974881755 |
---|
translations | Mathematica | "p[n_, x_, a_, q_] := QHypergeometricPFQ[{(q)^(- n), 0},{a*q},q,q*x] == Divide[1,Product[QPochhammer[Part[{(a)^(- 1)* (q)^(- n)},i],q,n],{i,1,Length[{(a)^(- 1)* (q)^(- n)}]}]]*QHypergeometricPFQ[{(q)^(- n), (x)^(- 1)},{},q,x/a]" |
---|
|
---|
positions | |
---|
includes | |
---|
isPartOf | |
---|
definiens | definition | "polynomial" |
---|
score | 1 |
---|
|
definition | "term of basic hypergeometric function" |
---|
score | 2 |
---|
|
definition | "Pochhammer symbol" |
---|
score | 1 |
---|
|
definition | "little q - Laguerre polynomial" |
---|
score | 2 |
---|
|
definition | "q - Pochhammer symbol" |
---|
score | 2 |
---|
|
|
---|
|
|
---|
|
id | 87 |
---|
pid | 143 |
---|
eid | "math.143.0" |
---|
title | "Q-Bessel polynomials" |
---|
formulae | id | "FORMULA_c89da2fda6f9f6411ed4292f6d845f52" |
---|
formula | "y_{n}(x;a;q)=\;_{2}\phi_1 \left(\begin{matrix} q^{-N} & -aq^{n} \\ 0 \end{matrix} ; q,qx \right)" |
---|
semanticFormula | "y_{n}(x;a;q) = \qgenhyperphi{2}{1}@{q^{-N} , -aq^{n}}{0}{q}{qx}" |
---|
confidence | 0.6264217257193126 |
---|
translations | Mathematica | "y[n_, x_, a_, q_] := QHypergeometricPFQ[{(q)^(- N), - a*(q)^(n)},{0},q,q*x]" |
---|
|
---|
positions | |
---|
includes | |
---|
isPartOf | |
---|
definiens | definition | "polynomial" |
---|
score | 1 |
---|
|
definition | "term of basic hypergeometric function" |
---|
score | 2 |
---|
|
definition | "Pochhammer symbol" |
---|
score | 0 |
---|
|
definition | "q - Bessel polynomial" |
---|
score | 1 |
---|
|
|
---|
|
|
---|
|
id | 88 |
---|
pid | 144 |
---|
eid | "math.144.2" |
---|
title | "Discrete q-Hermite polynomials" |
---|
formulae | id | "FORMULA_b9974285610b7a82c94b6a504726df8c" |
---|
formula | "h_n(ix;q^{-1}) = i^n\hat h_n(x;q)" |
---|
semanticFormula | "\discqHermitepolyhI{n}@{\iunit x}{q^{-1}} = \iunit^n \discqHermitepolyhII{n}@{x}{q}" |
---|
confidence | 0.8429359579302446 |
---|
translations | |
---|
positions | |
---|
includes | "\hat{h}_{n}(x;q)" |
"q" |
"h_{n}(x;q)" |
|
---|
isPartOf | |
---|
definiens | definition | "Hermite polynomial" |
---|
score | 2 |
---|
|
definition | "term of basic hypergeometric function" |
---|
score | 1 |
---|
|
definition | "Carlitz polynomial" |
---|
score | 1 |
---|
|
definition | "Al-Salam" |
---|
score | 1 |
---|
|
definition | "discrete q - Hermite polynomial" |
---|
score | 2 |
---|
|
|
---|
|
|
---|
|
id | 89 |
---|
pid | 145 |
---|
eid | "math.145.0" |
---|
title | "Q-Meixner–Pollaczek polynomials" |
---|
formulae | id | "FORMULA_fa6650cad7aed4d975716018ef03068f" |
---|
formula | "P_{n}(x;a\mid q) = a^{-n} e^{in\phi} \frac{a^2;q_n}{(q;q)_n} {_3}\Phi_2(q^-n, ae^{i(\theta+2\phi)}, ae^{-i\theta}; a^2, 0 \mid q; q)" |
---|
semanticFormula | "P_{n}(x ; a \mid q) = a^{-n} \expe^{\iunit n\phi} \frac{\qmultiPochhammersym{a^2}{q}{n}}{\qmultiPochhammersym{q}{q}{n}} \qgenhyperphi{3}{2}@{q^- n , a\expe^{\iunit(\theta + 2 \phi)} , a\expe^{- \iunit \theta}}{a^2, 0}{q}{q}" |
---|
confidence | 0.8662724998444776 |
---|
translations | Mathematica | translation | "P[n_, x_, a_, q_] := (a)^(- n)* Exp[I*n*\[Phi]]*Divide[Product[QPochhammer[Part[{(a)^(2)},i],q,n],{i,1,Length[{(a)^(2)}]}],Product[QPochhammer[Part[{q},i],q,n],{i,1,Length[{q}]}]]*QHypergeometricPFQ[{(q)^(-)* n , a*Exp[I*(\[Theta]+ 2*\[Phi])], a*Exp[- I*\[Theta]]},{(a)^(2), 0},q,q]" |
---|
|
---|
|
---|
positions | |
---|
includes | |
---|
isPartOf | |
---|
definiens | definition | "polynomial" |
---|
score | 1 |
---|
|
definition | "term of basic hypergeometric function" |
---|
score | 2 |
---|
|
definition | "Pochhammer symbol" |
---|
score | 1 |
---|
|
definition | "q - Pochhammer symbol" |
---|
score | 2 |
---|
|
definition | "Q Meixner – Pollaczek polynomials" |
---|
score | 2 |
---|
|
|
---|
|
|
---|
|
id | 90 |
---|
pid | 149 |
---|
eid | "math.149.0" |
---|
title | "Q-Laguerre polynomials" |
---|
formulae | id | "FORMULA_dea0af895f73964b98741e71bc0635cb" |
---|
formula | "\displaystyle L_n^{(\alpha)}(x;q) = \frac{(q^{\alpha+1};q)_n}{(q;q)_n} {}_1\phi_1(q^{-n};q^{\alpha+1};q,-q^{n+\alpha+1}x)" |
---|
semanticFormula | "\qLaguerrepolyL{\alpha}{n}@{x}{q} = \frac{\qmultiPochhammersym{q^{\alpha+1}}{q}{n}}{\qmultiPochhammersym{q}{q}{n}} \qgenhyperphi{1}{1}@{q^{-n}}{q^{\alpha+1}}{q}{- q^{n+\alpha+1} x}" |
---|
confidence | 0.779734956061429 |
---|
translations | Mathematica | translation | "L[n_, \[Alpha]_, x_, q_] := Divide[Product[QPochhammer[Part[{(q)^(\[Alpha]+ 1)},i],q,n],{i,1,Length[{(q)^(\[Alpha]+ 1)}]}],Product[QPochhammer[Part[{q},i],q,n],{i,1,Length[{q}]}]]*QHypergeometricPFQ[{(q)^(- n)},{(q)^(\[Alpha]+ 1)},q,- (q)^(n + \[Alpha]+ 1)* x]" |
---|
|
---|
|
---|
positions | |
---|
includes | "q" |
"P_{n}^{(\alpha)}(x;q)" |
|
---|
isPartOf | |
---|
definiens | definition | "Laguerre polynomial" |
---|
score | 2 |
---|
|
definition | "q - Laguerre polynomial" |
---|
score | 2 |
---|
|
definition | "term of basic hypergeometric function" |
---|
score | 2 |
---|
|
definition | "Pochhammer symbol" |
---|
score | 1 |
---|
|
definition | "q - Pochhammer symbol" |
---|
score | 2 |
---|
|
|
---|
|
|
---|
|
id | 91 |
---|
pid | 150 |
---|
eid | "math.150.3" |
---|
title | "Continuous q-Hermite polynomials" |
---|
formulae | id | "FORMULA_a10dc9de9b2b618ad2f2e96dc9eb0207" |
---|
formula | "\sum_{n=0}^\infty H_n(x \mid q) \frac{t^n}{(q;q)_n} = \frac{1}{\left( t e^{i \theta},t e^{-i \theta};q \right)_\infty}" |
---|
semanticFormula | "\sum_{n=0}^\infty \contqHermitepolyH{n}@{x}{q} \frac{t^n}{\qmultiPochhammersym{q}{q}{n}} = \frac{1}{\qmultiPochhammersym{t \expe^{\iunit \theta} , t \expe^{- \iunit \theta}}{q}{\infty}}" |
---|
confidence | 0.7796357038819148 |
---|
translations | |
---|
positions | |
---|
includes | |
---|
isPartOf | |
---|
definiens | definition | "continuous q - Hermite polynomial" |
---|
score | 2 |
---|
|
definition | "q - Pochhammer symbol" |
---|
score | 2 |
---|
|
|
---|
|
|
---|
|
id | 92 |
---|
pid | 151 |
---|
eid | "math.151.0" |
---|
title | "Ince equation" |
---|
formulae | id | "FORMULA_ce9ed9f979f486263028e3d86b63ac60" |
---|
formula | "w^{\prime\prime}+\xi\sin(2z)w^{\prime}+(\eta-p\xi\cos(2z))w=0. " |
---|
semanticFormula | "w^{\prime\prime}+\xi\sin(2z)w^{\prime}+(\eta-p\xi\cos(2z))w=0" |
---|
confidence | 0 |
---|
translations | Mathematica | translation | "D[w[z], {z, 2}] + \[Xi]*Sin[2*z]*D[w[z], {z, 1}] + (\[Eta]-p*\[Xi]*Cos[2*z])*w[z] == 0" |
---|
|
---|
|
---|
positions | |
---|
includes | |
---|
isPartOf | |
---|
definiens | definition | "differential equation" |
---|
score | 2 |
---|
|
definition | "Ince equation" |
---|
score | 2 |
---|
|
definition | "mathematics" |
---|
score | 0 |
---|
|
definition | "non-negative integer" |
---|
score | 0 |
---|
|
definition | "Edward Lindsay Ince" |
---|
score | 0 |
---|
|
definition | "polynomial solution" |
---|
score | 0 |
---|
|
definition | "Ince polynomial" |
---|
score | 1 |
---|
|
|
---|
|
|
---|
|
id | 93 |
---|
pid | 152 |
---|
eid | "math.152.1" |
---|
title | "Ferrers function" |
---|
formulae | id | "FORMULA_b5ab87b9cd2da05be00884345889d9e3" |
---|
formula | "Q_v^\mu(x)= \cos(\mu\pi)\left(\frac{1+x}{1-x}\right)^{\mu/2}\frac{F(v+1,-v;1-\mu;1/2-2/x)} {\Gamma(1-\mu ) }" |
---|
semanticFormula | "\FerrersQ[\mu]{v}@{x} = \cos(\mu \cpi)(\frac{1+x}{1-x})^{\mu/2} \frac{\hyperF@{v+1}{-v}{1-\mu}{1/2-2/x}}{\EulerGamma@{1-\mu}}" |
---|
confidence | 0.8133162393162393 |
---|
translations | Mathematica | translation | "LegendreQ[v, \[Mu], x] == Cos[(\[Mu]*Pi)*]*(Divide[1 + x,1 - x])^(\[Mu]/2)*Divide[Hypergeometric2F1[v + 1, - v, 1 - \[Mu], 1/2 - 2/x],Gamma[1 - \[Mu]]]" |
---|
|
---|
Maple | translation | "LegendreQ(v, mu, x) = cos((mu*Pi)*)*((1 + x)/(1 - x))^(mu/2)*(hypergeom([v + 1, - v], [1 - mu], 1/2 - 2/x))/(GAMMA(1 - mu))" |
---|
|
---|
|
---|
positions | |
---|
includes | |
---|
isPartOf | |
---|
definiens | definition | "Ferrers function of the second kind" |
---|
score | 2 |
---|
|
definition | "Ferrers function of the first kind" |
---|
score | 1 |
---|
|
definition | "Gamma function" |
---|
score | 2 |
---|
|
definition | "hypergeometric function" |
---|
score | 2 |
---|
|
|
---|
|
|
---|
|
id | 94 |
---|
pid | 153 |
---|
eid | "math.153.27" |
---|
title | "Incomplete Bessel functions" |
---|
formulae | id | "FORMULA_35ab66efafff0de40d98c0778ebb63c3" |
---|
formula | "H_{-v}^{(1)}(z,w)=e^{v\pi i}H_v^{(1)}(z,w)" |
---|
semanticFormula | "H_{-v}^{(1)}(z,w) = \expe^{v \cpi \iunit} H_v^{(1)}(z , w)" |
---|
confidence | 0 |
---|
translations | |
---|
positions | |
---|
includes | |
---|
isPartOf | |
---|
definiens | definition | "incomplete Bessel function" |
---|
score | 2 |
---|
|
|
---|
|
|
---|
|
id | 95 |
---|
pid | 154 |
---|
eid | "math.154.0" |
---|
title | "Incomplete Bessel K function/generalized incomplete gamma function" |
---|
formulae | id | "FORMULA_c333a7966510ed0b8f4de3147eabe47a" |
---|
formula | "K_v(x,y)=\int_1^\infty\frac{e^{-xt-\frac{y}{t}}}{t^{v+1}}dt" |
---|
semanticFormula | "K_v(x , y) = \int_1^\infty \frac{\expe^{-xt-\frac{y}{t}}}{t^{v+1}} \diff{t}" |
---|
confidence | 0 |
---|
translations | Mathematica | translation | "K[v_, x_, y_] := Integrate[Divide[Exp[- x*t -Divide[y,t]],(t)^(v + 1)], {t, 1, Infinity}, GenerateConditions->None]" |
---|
|
---|
|
---|
positions | |
---|
includes | |
---|
isPartOf | |
---|
definiens | definition | "mathematician" |
---|
score | 0 |
---|
|
definition | "type incomplete-version of Bessel function" |
---|
score | 2 |
---|
|
definition | "type generalized-version of incomplete gamma function" |
---|
score | 0 |
---|
|
|
---|
|
|
---|
|
|