Gold 12
Chebyshev polynomials
- Gold ID
- 12
- Link
- https://sigir21.wmflabs.org/wiki/Chebyshev_polynomials#math.62.44
- Formula
- TeX Source
x_k = \cos\left(\frac{\pi(k+1/2)}{n}\right),\quad k=0,\ldots,n-1
Translation Results | ||
---|---|---|
Semantic LaTeX | Mathematica Translation | Maple Translations |
Semantic LaTeX
- Translation
x_k = \cos(\frac{\cpi(k + 1 / 2)}{n}) , \quad k = 0 , \ldots , n - 1
- Expected (Gold Entry)
x_k = \cos(\frac{\cpi(k + 1 / 2)}{n}) , \quad k = 0 , \ldots , n - 1
Mathematica
- Translation
Subscript[x, k] == Cos[Divide[Pi*(k + 1/2),n]]
- Expected (Gold Entry)
Subscript[x, k] == Cos[Divide[Pi*(k + 1/2),n]]
Maple
- Translation
x[k] = cos((Pi*(k + 1/2))/(n))
- Expected (Gold Entry)
x[k] = cos((Pi*(k + 1/2))/(n))