Gold 12

From LaTeX CAS translator demo
Jump to navigation Jump to search

Chebyshev polynomials

Gold ID
12
Link
https://sigir21.wmflabs.org/wiki/Chebyshev_polynomials#math.62.44
Formula
xk=cos(π(k+1/2)n),k=0,,n1
TeX Source
x_k = \cos\left(\frac{\pi(k+1/2)}{n}\right),\quad k=0,\ldots,n-1
Translation Results
Semantic LaTeX Mathematica Translation Maple Translations
Yes Yes Yes

Semantic LaTeX

Translation
x_k = \cos(\frac{\cpi(k + 1 / 2)}{n}) , \quad k = 0 , \ldots , n - 1
Expected (Gold Entry)
x_k = \cos(\frac{\cpi(k + 1 / 2)}{n}) , \quad k = 0 , \ldots , n - 1


Mathematica

Translation
Subscript[x, k] == Cos[Divide[Pi*(k + 1/2),n]]
Expected (Gold Entry)
Subscript[x, k] == Cos[Divide[Pi*(k + 1/2),n]]


Maple

Translation
x[k] = cos((Pi*(k + 1/2))/(n))
Expected (Gold Entry)
x[k] = cos((Pi*(k + 1/2))/(n))