Gold 32
Associated Legendre polynomials
- Gold ID
- 32
- Link
- https://sigir21.wmflabs.org/wiki/Associated_Legendre_polynomials#math.82.8
- Formula
- TeX Source
c_{lm} = (-1)^m \frac{(\ell-m)!}{(\ell+m)!}
Translation Results | ||
---|---|---|
Semantic LaTeX | Mathematica Translation | Maple Translations |
Semantic LaTeX
- Translation
c_{lm} = (-1)^m \frac{(\ell-m)!}{(\ell+m)!}
- Expected (Gold Entry)
c_{lm} = (-1)^m \frac{(\ell-m)!}{(\ell+m)!}
Mathematica
- Translation
Subscript[c, l, m] == (- 1)^(m)*Divide[(\[ScriptL]- m)!,(\[ScriptL]+ m)!]
- Expected (Gold Entry)
Subscript[c, l, m] == (- 1)^(m)*Divide[(\[ScriptL]- m)!,(\[ScriptL]+ m)!]
Maple
- Translation
c[l, m] = (- 1)^(m)*(factorial(ell - m))/(factorial(ell + m))
- Expected (Gold Entry)
c[l, m] = (- 1)^(m)*(factorial(ell - m))/(factorial(ell + m))