Gold 32

From LaTeX CAS translator demo
Jump to navigation Jump to search

Associated Legendre polynomials

Gold ID
32
Link
https://sigir21.wmflabs.org/wiki/Associated_Legendre_polynomials#math.82.8
Formula
clm=(1)m(m)!(+m)!
TeX Source
c_{lm} = (-1)^m \frac{(\ell-m)!}{(\ell+m)!}
Translation Results
Semantic LaTeX Mathematica Translation Maple Translations
Yes Yes Yes

Semantic LaTeX

Translation
c_{lm} = (-1)^m \frac{(\ell-m)!}{(\ell+m)!}
Expected (Gold Entry)
c_{lm} = (-1)^m \frac{(\ell-m)!}{(\ell+m)!}


Mathematica

Translation
Subscript[c, l, m] == (- 1)^(m)*Divide[(\[ScriptL]- m)!,(\[ScriptL]+ m)!]
Expected (Gold Entry)
Subscript[c, l, m] == (- 1)^(m)*Divide[(\[ScriptL]- m)!,(\[ScriptL]+ m)!]


Maple

Translation
c[l, m] = (- 1)^(m)*(factorial(ell - m))/(factorial(ell + m))
Expected (Gold Entry)
c[l, m] = (- 1)^(m)*(factorial(ell - m))/(factorial(ell + m))