Gold 36
Confluent hypergeometric function
- Gold ID
- 36
- Link
- https://sigir21.wmflabs.org/wiki/Confluent_hypergeometric_function#math.86.44
- Formula
- TeX Source
M(1,2,z)=(e^z-1)/z,\ \ M(1,3,z)=2!(e^z-1-z)/z^2
Translation Results | ||
---|---|---|
Semantic LaTeX | Mathematica Translation | Maple Translations |
Semantic LaTeX
- Translation
\KummerconfhyperM@{1}{2}{z} =(\expe^z - 1) / z , \KummerconfhyperM@{1}{3}{z} = 2!(\expe^z - 1 - z) / z^2
- Expected (Gold Entry)
\KummerconfhyperM@{1}{2}{z} = (\expe^z - 1) / z , \KummerconfhyperM@{1}{3}{z} = 2! (\expe^z - 1 - z) / z^2
Mathematica
- Translation
Hypergeometric1F1[1, 2, z] == (Exp[z]- 1)/z Hypergeometric1F1[1, 3, z] == (2)!*(Exp[z]- 1 - z)/(z)^(2)
- Expected (Gold Entry)
Hypergeometric1F1[1, 2, z] == (Exp[z]- 1)/z Hypergeometric1F1[1, 3, z] == (2)!*(Exp[z]- 1 - z)/(z)^(2)
Maple
- Translation
KummerM(1, 2, z) = (exp(z)- 1)/z; KummerM(1, 3, z) = factorial(2)*(exp(z)- 1 - z)/(z)^(2)
- Expected (Gold Entry)
KummerM(1, 2, z) = (exp(z)- 1)/z; KummerM(1, 3, z) = factorial(2)*(exp(z)- 1 - z)/(z)^(2)