Gold 36

From LaTeX CAS translator demo
Jump to navigation Jump to search

Confluent hypergeometric function

Gold ID
36
Link
https://sigir21.wmflabs.org/wiki/Confluent_hypergeometric_function#math.86.44
Formula
M(1,2,z)=(ez1)/z,M(1,3,z)=2!(ez1z)/z2
TeX Source
M(1,2,z)=(e^z-1)/z,\ \ M(1,3,z)=2!(e^z-1-z)/z^2
Translation Results
Semantic LaTeX Mathematica Translation Maple Translations
Yes Yes Yes

Semantic LaTeX

Translation
\KummerconfhyperM@{1}{2}{z} =(\expe^z - 1) / z , \KummerconfhyperM@{1}{3}{z} = 2!(\expe^z - 1 - z) / z^2
Expected (Gold Entry)
\KummerconfhyperM@{1}{2}{z} = (\expe^z - 1) / z , \KummerconfhyperM@{1}{3}{z} = 2! (\expe^z - 1 - z) / z^2


Mathematica

Translation
Hypergeometric1F1[1, 2, z] == (Exp[z]- 1)/z Hypergeometric1F1[1, 3, z] == (2)!*(Exp[z]- 1 - z)/(z)^(2)
Expected (Gold Entry)
Hypergeometric1F1[1, 2, z] == (Exp[z]- 1)/z Hypergeometric1F1[1, 3, z] == (2)!*(Exp[z]- 1 - z)/(z)^(2)


Maple

Translation
KummerM(1, 2, z) = (exp(z)- 1)/z; KummerM(1, 3, z) = factorial(2)*(exp(z)- 1 - z)/(z)^(2)
Expected (Gold Entry)
KummerM(1, 2, z) = (exp(z)- 1)/z; KummerM(1, 3, z) = factorial(2)*(exp(z)- 1 - z)/(z)^(2)