Gold 41
Barnes G-function
- Gold ID
- 41
- Link
- https://sigir21.wmflabs.org/wiki/Barnes_G-function#math.91.47
- Formula
- TeX Source
\frac{1}{\Gamma(z)}= z e^{\gamma z} \prod_{k=1}^\infty \left\{ \left(1+\frac{z}{k}\right)e^{-z/k} \right\}
Translation Results | ||
---|---|---|
Semantic LaTeX | Mathematica Translation | Maple Translations |
Semantic LaTeX
- Translation
\frac{1}{\EulerGamma@{z}} = z \expe^{\EulerConstant z} \prod_{k=1}^\infty \{(1 + \frac{z}{k}) \expe^{-z/k} \}
- Expected (Gold Entry)
\frac{1}{\EulerGamma@{z}} = z \expe^{\EulerConstant z} \prod_{k=1}^\infty \{(1 + \frac{z}{k}) \expe^{-z/k} \}
Mathematica
- Translation
Divide[1,Gamma[z]] == z*Exp[EulerGamma*z]*Product[(1 +Divide[z,k])*Exp[- z/k], {k, 1, Infinity}, GenerateConditions->None]
- Expected (Gold Entry)
Divide[1,Gamma[z]] == z*Exp[EulerGamma*z]*Product[(1 +Divide[z,k])*Exp[- z/k], {k, 1, Infinity}]
Maple
- Translation
(1)/(GAMMA(z)) = z*exp(gamma*z)*product((1 +(z)/(k))*exp(- z/k), k = 1..infinity)
- Expected (Gold Entry)
(1)/(GAMMA(z)) = z*exp(gamma*z)*product((1 +(z)/(k))*exp(- z/k), k = 1..infinity)