Gold 41

From LaTeX CAS translator demo
Jump to navigation Jump to search

Barnes G-function

Gold ID
41
Link
https://sigir21.wmflabs.org/wiki/Barnes_G-function#math.91.47
Formula
1Γ(z)=zeγzk=1{(1+zk)ez/k}
TeX Source
\frac{1}{\Gamma(z)}= z e^{\gamma z} \prod_{k=1}^\infty \left\{ \left(1+\frac{z}{k}\right)e^{-z/k} \right\}
Translation Results
Semantic LaTeX Mathematica Translation Maple Translations
Yes Yes Yes

Semantic LaTeX

Translation
\frac{1}{\EulerGamma@{z}} = z \expe^{\EulerConstant z} \prod_{k=1}^\infty \{(1 + \frac{z}{k}) \expe^{-z/k} \}
Expected (Gold Entry)
\frac{1}{\EulerGamma@{z}} = z \expe^{\EulerConstant z} \prod_{k=1}^\infty \{(1 + \frac{z}{k}) \expe^{-z/k} \}


Mathematica

Translation
Divide[1,Gamma[z]] == z*Exp[EulerGamma*z]*Product[(1 +Divide[z,k])*Exp[- z/k], {k, 1, Infinity}, GenerateConditions->None]
Expected (Gold Entry)
Divide[1,Gamma[z]] == z*Exp[EulerGamma*z]*Product[(1 +Divide[z,k])*Exp[- z/k], {k, 1, Infinity}]


Maple

Translation
(1)/(GAMMA(z)) = z*exp(gamma*z)*product((1 +(z)/(k))*exp(- z/k), k = 1..infinity)
Expected (Gold Entry)
(1)/(GAMMA(z)) = z*exp(gamma*z)*product((1 +(z)/(k))*exp(- z/k), k = 1..infinity)