Anger function

From LaTeX CAS translator demo
Jump to navigation Jump to search

In mathematics, the Anger function, introduced by C. T. Anger (1855), is a function defined as

𝐉ν(z)=1π0πcos(νθzsinθ)dθ

and is closely related to Bessel functions.

The Weber function (also known as Lommel-Weber function), introduced by H. F. Weber (1879), is a closely related function defined by

𝐄ν(z)=1π0πsin(νθzsinθ)dθ

and is closely related to Bessel functions of the second kind.

Relation between Weber and Anger functions

The Anger and Weber functions are related by

sin(πν)𝐉ν(z)=cos(πν)𝐄ν(z)𝐄ν(z)sin(πν)𝐄ν(z)=cos(πν)𝐉ν(z)𝐉ν(z)

so in particular if ν is not an integer they can be expressed as linear combinations of each other. If ν is an integer then Anger functions Jν are the same as Bessel functions Jν, and Weber functions can be expressed as finite linear combinations of Struve functions.

Power series expansion

The Anger function has the power series expansion[1]

𝐉ν(z)=cosπν2k=0(1)kz2k4kΓ(k+ν2+1)Γ(kν2+1)+sinπν2k=0(1)kz2k+122k+1Γ(k+ν2+32)Γ(kν2+32)

While the Weber function has the power series expansion[1]

𝐄ν(z)=sinπν2k=0(1)kz2k4kΓ(k+ν2+1)Γ(kν2+1)cosπν2k=0(1)kz2k+122k+1Γ(k+ν2+32)Γ(kν2+32)

Differential equations

The Anger and Weber functions are solutions of inhomogeneous forms of Bessel's equation

z2y+zy+(z2ν2)y=0.

More precisely, the Anger functions satisfy the equation[1]

z2y+zy+(z2ν2)y=(zν)sin(πν)π,

and the Weber functions satisfy the equation[1]

z2y+zy+(z2ν2)y=z+ν+(zν)cos(πν)π.

Recurrence Relations

The Anger function satisfies this inhomogeneous form of recurrence relation[1]

z𝐉ν1(z)+z𝐉ν+1(z)=2ν𝐉ν(z)2sinπνπ

While the Weber function satisfies this inhomogeneous form of recurrence relation[1]

z𝐄ν1(z)+z𝐄ν+1(z)=2ν𝐄ν(z)2(1cosπν)π

Delay Differential Equations

The Anger and Weber functions satisfy these homogeneous forms of delay differential equations[1]

𝐉ν1(z)𝐉ν+1(z)=2z𝐉ν(z)
𝐄ν1(z)𝐄ν+1(z)=2z𝐄ν(z)

The Anger and Weber functions also satisfy these inhomogeneous forms of delay differential equations[1]

zz𝐉ν(z)±ν𝐉ν(z)=±z𝐉ν1(z)±sinπνπ
zz𝐄ν(z)±ν𝐄ν(z)=±z𝐄ν1(z)±1cosπνπ

References

  • Abramowitz, Milton; Stegun, Irene Ann, eds. (1983) [June 1964]. "Chapter 12". Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. Applied Mathematics Series. 55 (Ninth reprint with additional corrections of tenth original printing with corrections (December 1972); first ed.). Washington D.C.; New York: United States Department of Commerce, National Bureau of Standards; Dover Publications. p. 498. ISBN 978-0-486-61272-0. LCCN 64-60036. MR 0167642. LCCN 65-12253.
  • C.T. Anger, Neueste Schr. d. Naturf. d. Ges. i. Danzig, 5 (1855) pp. 1–29
  • Prudnikov, A.P. (2001) [1994], "Anger function", Encyclopedia of Mathematics, EMS Press
  • Prudnikov, A.P. (2001) [1994], "Weber function", Encyclopedia of Mathematics, EMS Press
  • G.N. Watson, "A treatise on the theory of Bessel functions", 1–2, Cambridge Univ. Press (1952)
  • H.F. Weber, Zurich Vierteljahresschrift, 24 (1879) pp. 33–76
  1. 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 Paris, R. B. (2010), "Anger-Weber Functions", in Olver, Frank W. J.; Lozier, Daniel M.; Boisvert, Ronald F.; Clark, Charles W. (eds.), NIST Handbook of Mathematical Functions, Cambridge University Press, ISBN 978-0-521-19225-5, MR 2723248