Gegenbauer polynomials

From LaTeX CAS translator demo
Jump to navigation Jump to search

In mathematics, Gegenbauer polynomials or ultraspherical polynomials C(α)
n
(x) are orthogonal polynomials on the interval [−1,1] with respect to the weight function (1 − x2)α–1/2. They generalize Legendre polynomials and Chebyshev polynomials, and are special cases of Jacobi polynomials. They are named after Leopold Gegenbauer.

Characterizations

A variety of characterizations of the Gegenbauer polynomials are available.

1(12xt+t2)α=n=0Cn(α)(x)tn.
C0α(x)=1C1α(x)=2αxCnα(x)=1n[2x(n+α1)Cn1α(x)(n+2α2)Cn2α(x)].
  • Gegenbauer polynomials are particular solutions of the Gegenbauer differential equation (Suetin 2001):
(1x2)y(2α+1)xy+n(n+2α)y=0.
When α = 1/2, the equation reduces to the Legendre equation, and the Gegenbauer polynomials reduce to the Legendre polynomials.
When α = 1, the equation reduces to the Chebyshev differential equation, and the Gegenbauer polynomials reduce to the Chebyshev polynomials of the second kind.[1]
Cn(α)(z)=(2α)nn!2F1(n,2α+n;α+12;1z2).
(Abramowitz & Stegun p. 561). Here (2α)n is the rising factorial. Explicitly,
Cn(α)(z)=k=0n/2(1)kΓ(nk+α)Γ(α)k!(n2k)!(2z)n2k.
Cn(α)(x)=(2α)n(α+12)nPn(α1/2,α1/2)(x).
in which (θ)n represents the rising factorial of θ.
One therefore also has the Rodrigues formula
Cn(α)(x)=(1)n2nn!Γ(α+12)Γ(n+2α)Γ(2α)Γ(α+n+12)(1x2)α+1/2dndxn[(1x2)n+α1/2].

Orthogonality and normalization

For a fixed α, the polynomials are orthogonal on [−1, 1] with respect to the weighting function (Abramowitz & Stegun p. 774)

w(z)=(1z2)α12.

To wit, for n ≠ m,

11Cn(α)(x)Cm(α)(x)(1x2)α12dx=0.

They are normalized by

11[Cn(α)(x)]2(1x2)α12dx=π212αΓ(n+2α)n!(n+α)[Γ(α)]2.

Applications

The Gegenbauer polynomials appear naturally as extensions of Legendre polynomials in the context of potential theory and harmonic analysis. The Newtonian potential in Rn has the expansion, valid with α = (n − 2)/2,

1|xy|n2=k=0|x|k|y|k+n2Ck(α)(xy).

When n = 3, this gives the Legendre polynomial expansion of the gravitational potential. Similar expressions are available for the expansion of the Poisson kernel in a ball (Stein & Weiss 1971).

It follows that the quantities Ck((n2)/2)(xy) are spherical harmonics, when regarded as a function of x only. They are, in fact, exactly the zonal spherical harmonics, up to a normalizing constant.

Gegenbauer polynomials also appear in the theory of Positive-definite functions.

The Askey–Gasper inequality reads

j=0nCjα(x)(2α+j1j)0(x1,α1/4).

See also

References

  • Abramowitz, Milton; Stegun, Irene Ann, eds. (1983) [June 1964]. "Chapter 22". Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. Applied Mathematics Series. 55 (Ninth reprint with additional corrections of tenth original printing with corrections (December 1972); first ed.). Washington D.C.; New York: United States Department of Commerce, National Bureau of Standards; Dover Publications. p. 773. ISBN 978-0-486-61272-0. LCCN 64-60036. MR 0167642. LCCN 65-12253.*Koornwinder, Tom H.; Wong, Roderick S. C.; Koekoek, Roelof; Swarttouw, René F. (2010), "Orthogonal Polynomials", in Olver, Frank W. J.; Lozier, Daniel M.; Boisvert, Ronald F.; Clark, Charles W. (eds.), NIST Handbook of Mathematical Functions, Cambridge University Press, ISBN 978-0-521-19225-5, MR 2723248
  • Stein, Elias; Weiss, Guido (1971), Introduction to Fourier Analysis on Euclidean Spaces, Princeton, N.J.: Princeton University Press, ISBN 978-0-691-08078-9.
  • Suetin, P.K. (2001) [1994], "Ultraspherical polynomials", Encyclopedia of Mathematics, EMS Press.
Specific
  1. Arfken, Weber, and Harris (2013) "Mathematical Methods for Physicists", 7th edition; ch. 18.4