Gold 18

From LaTeX CAS translator demo
Jump to navigation Jump to search

Fresnel integral

Gold ID
18
Link
https://sigir21.wmflabs.org/wiki/Fresnel_integral#math.68.51
Formula
xmeixndx=xm+1m+11F1(m+1n1+m+1nixn)[6px]=1nim+1nγ(m+1n,ixn),
TeX Source
\begin{align}\int x^m e^{ix^n}\,dx & =\frac{x^{m+1}}{m+1}\,_1F_1\left(\begin{array}{c} \frac{m+1}{n}\\1+\frac{m+1}{n}\end{array}\mid ix^n\right) \\[6px]& =\frac{1}{n} i^\frac{m+1}{n}\gamma\left(\frac{m+1}{n},-ix^n\right),\end{align}
Translation Results
Semantic LaTeX Mathematica Translation Maple Translations
No No No

Semantic LaTeX

Translation
\begin{align}\int x^m \expe^{\iunit x^n} \diff{x} &= \frac{x^{m+1}}{m+1}_1 F_1(\begin{array}{c} \frac{m+1}{n}\\1+\frac{m+1}{n}\end{array} \mid \iunit x^n) \\ &= \frac{1}{n} \iunit^\frac{m+1}{n} \incgamma@{\frac{m+1}{n}}{- \iunit x^n} ,\end{align}
Expected (Gold Entry)
\begin{align}\int x^m \exp(\iunit x^n) \diff{x} &= \frac{x^{m+1}}{m+1}\genhyperF{1}{1}@{\frac{m+1}{n}}{1+\frac{m+1}{n}}{\iunit x^n}\\ &=\frac{1}{n} \iunit^{(m+1)/n} \incgamma@{\frac{m+1}{n}}{-\iunit x^n}\end{align}


Mathematica

Translation
Expected (Gold Entry)
Integrate[(x)^(m)* Exp[I*(x)^(n)], x] == Divide[(x)^(m + 1),m + 1]*HypergeometricPFQ[{Divide[m + 1,n]}, {1 +Divide[m + 1,n]}, I*(x)^(n)] == Divide[1,n]*(I)^((m + 1)/n)* Gamma[Divide[m + 1,n], 0, - I*(x)^(n)]


Maple

Translation
Expected (Gold Entry)
int((x)^(m)* exp(I*(x)^(n)), x) = ((x)^(m + 1))/(m + 1)*hypergeom([(m + 1)/(n)], [1 +(m + 1)/(n)], I*(x)^(n)) = (1)/(n)*(I)^((m + 1)/n)* GAMMA((m + 1)/(n))-GAMMA((m + 1)/(n), - I*(x)^(n))