Gold 2
Jump to navigation
Jump to search
Ellipse
- Gold ID
- 2
- Link
- https://sigir21.wmflabs.org/wiki/Ellipse#math.52.404
- Formula
- TeX Source
E(e) \,=\, \int_0^{\pi/2}\sqrt {1 - e^2 \sin^2\theta}\ d\theta
Translation Results | ||
---|---|---|
Semantic LaTeX | Mathematica Translation | Maple Translations |
Semantic LaTeX
- Translation
\compellintEk@{\expe} = \int_0^{\cpi / 2} \sqrt{1 - \expe^2 \sin^2 \theta} \diff{\theta}
- Expected (Gold Entry)
\compellintEk@{e} = \int_0^{\cpi / 2} \sqrt{1 - e^2 \sin^2 \theta} \diff{\theta}
Mathematica
- Translation
EllipticE[(E)^2] == Integrate[Sqrt[1 - Exp[2]*(Sin[\[Theta]])^(2)], {\[Theta], 0, Pi/2}, GenerateConditions->None]
- Expected (Gold Entry)
EllipticE[(e)^2] == Integrate[Sqrt[1 - (e)^(2)*(Sin[\[Theta]])^(2)], {\[Theta], 0, Pi/2}]
Maple
- Translation
EllipticE(exp(1)) = int(sqrt(1 - exp(2)*(sin(theta))^(2)), theta = 0..Pi/2)
- Expected (Gold Entry)
EllipticE(e) = int(sqrt(1 - (e)^(2)*(sin(theta))^(2)), theta = 0..Pi/2)