Gold 48

From LaTeX CAS translator demo
Jump to navigation Jump to search

3-j symbol

Gold ID
48
Link
https://sigir21.wmflabs.org/wiki/3-j_symbol#math.99.30
Formula
(jmm):=2j+1(j0jm0m)=(1)jmδm,m
TeX Source
\begin{pmatrix} j \\ m \quad m'\end{pmatrix}:= \sqrt{2 j + 1}\begin{pmatrix} j & 0 & j \\ m & 0 & m'\end{pmatrix}= (-1)^{j - m'} \delta_{m, -m'}
Translation Results
Semantic LaTeX Mathematica Translation Maple Translations
Yes No -

Semantic LaTeX

Translation
\begin{pmatrix} j \\ m \quad m'\end{pmatrix} : = \sqrt{2 j + 1} \Wignerthreejsym{j}{0}{j}{m}{0}{m'} =(- 1)^{j - m'} \delta_{m, -m'}
Expected (Gold Entry)
\begin{pmatrix} j \\ m \quad m'\end{pmatrix}:= \sqrt{2 j + 1}\begin{pmatrix} j & 0 & j \\ m & 0 & m'\end{pmatrix}= (-1)^{j - m'} \delta_{m, -m'}


Mathematica

Translation
Expected (Gold Entry)
Wigner[j_, m_, m\[Prime]_] := Sqrt[2*j+1] * {{j, 0, j}, {m, 0, m\[Prime]}} = (-1)^(j-m\[Prime])*Subscript[\[Delta], m, -m\[Prime]]


Maple

Translation
Expected (Gold Entry)