Gold 52
Jump to navigation
Jump to search
Kelvin functions
- Gold ID
- 52
- Link
- https://sigir21.wmflabs.org/wiki/Kelvin_functions#math.103.8
- Formula
- TeX Source
g_1(x) = \sum_{k \geq 1} \frac{\sin(k \pi / 4)}{k! (8x)^k} \prod_{l = 1}^k (2l - 1)^2
Translation Results | ||
---|---|---|
Semantic LaTeX | Mathematica Translation | Maple Translations |
Semantic LaTeX
- Translation
g_1(x) = \sum_{k \geq 1} \frac{\sin(k \cpi / 4)}{k! (8x)^k} \prod_{l = 1}^k(2 l - 1)^2
- Expected (Gold Entry)
g_1(x) = \sum_{k \geq 1} \frac{\sin(k \cpi / 4)}{k! (8x)^k} \prod_{l = 1}^k(2 l - 1)^2
Mathematica
- Translation
Subscript[g, 1][x] == Sum[Divide[Sin[k*Pi/4],(k)!*(8*x)^(k)]*Product[(2*l - 1)^(2), {l, 1, k}, GenerateConditions->None], {k, 1, Infinity}, GenerateConditions->None]
- Expected (Gold Entry)
Subscript[g, 1][x_] := Sum[Divide[Sin[k*Pi/4],(k)!*(8*x)^(k)]*Product[(2*l - 1)^(2), {l, 1, k}], {k, 1, Infinity}]
Maple
- Translation
g[1](x) = sum((sin(k*Pi/4))/(factorial(k)*(8*x)^(k))*product((2*l - 1)^(2), l = 1..k), k = 1..infinity)
- Expected (Gold Entry)
g[1] := (x) -> sum((sin(k*Pi/4))/(factorial(k)*(8*x)^(k))*product((2*l - 1)^(2), l = 1..k), k = 1..infinity)