Gold 52

From LaTeX CAS translator demo
Jump to navigation Jump to search

Kelvin functions

Gold ID
52
Link
https://sigir21.wmflabs.org/wiki/Kelvin_functions#math.103.8
Formula
g1(x)=k1sin(kπ/4)k!(8x)kl=1k(2l1)2
TeX Source
g_1(x) = \sum_{k \geq 1} \frac{\sin(k \pi / 4)}{k! (8x)^k} \prod_{l = 1}^k (2l - 1)^2
Translation Results
Semantic LaTeX Mathematica Translation Maple Translations
Yes No No

Semantic LaTeX

Translation
g_1(x) = \sum_{k \geq 1} \frac{\sin(k \cpi / 4)}{k! (8x)^k} \prod_{l = 1}^k(2 l - 1)^2
Expected (Gold Entry)
g_1(x) = \sum_{k \geq 1} \frac{\sin(k \cpi / 4)}{k! (8x)^k} \prod_{l = 1}^k(2 l - 1)^2


Mathematica

Translation
Subscript[g, 1][x] == Sum[Divide[Sin[k*Pi/4],(k)!*(8*x)^(k)]*Product[(2*l - 1)^(2), {l, 1, k}, GenerateConditions->None], {k, 1, Infinity}, GenerateConditions->None]
Expected (Gold Entry)
Subscript[g, 1][x_] := Sum[Divide[Sin[k*Pi/4],(k)!*(8*x)^(k)]*Product[(2*l - 1)^(2), {l, 1, k}], {k, 1, Infinity}]


Maple

Translation
g[1](x) = sum((sin(k*Pi/4))/(factorial(k)*(8*x)^(k))*product((2*l - 1)^(2), l = 1..k), k = 1..infinity)
Expected (Gold Entry)
g[1] := (x) -> sum((sin(k*Pi/4))/(factorial(k)*(8*x)^(k))*product((2*l - 1)^(2), l = 1..k), k = 1..infinity)