Gold 61

From LaTeX CAS translator demo
Jump to navigation Jump to search

Charlier polynomials

Gold ID
61
Link
https://sigir21.wmflabs.org/wiki/Charlier_polynomials#math.113.2
Formula
x=0μxx!Cn(x;μ)Cm(x;μ)=μneμn!δnm,μ>0
TeX Source
\sum_{x=0}^\infty \frac{\mu^x}{x!} C_n(x; \mu)C_m(x; \mu)=\mu^{-n} e^\mu n! \delta_{nm}, \quad \mu>0
Translation Results
Semantic LaTeX Mathematica Translation Maple Translations
No No -

Semantic LaTeX

Translation
\sum_{x=0}^\infty \frac{\mu^x}{x!} C_n(x ; \mu) C_m(x ; \mu) = \mu^{-n} \expe^\mu n! \delta_{nm} , \quad \mu > 0
Expected (Gold Entry)
\sum_{x=0}^\infty \frac{\mu^x}{x!} \CharlierpolyC{n}@{x}{\mu} \CharlierpolyC{m}@{x}{\mu} = \mu^{-n} \expe^\mu n! \delta_{nm} , \quad \mu > 0


Mathematica

Translation
Sum[Divide[\[Mu]^(x),(x)!]*Subscript[C, n][x ; \[Mu]]* Subscript[C, m][x ; \[Mu]], {x, 0, Infinity}, GenerateConditions->None] == \[Mu]^(- n)* Exp[\[Mu]]*(n)!*Subscript[\[Delta], n, m]
Expected (Gold Entry)
Sum[Divide[\[Mu]^x, x!] * HypergeometricPFQ[{-n, -x}, {}, -Divide[1,\[Mu]]] * HypergeometricPFQ[{-m, -x}, {}, -Divide[1,\[Mu]]], {x, 0, Infinity}] == \[Mu]^(-n)*Exp[\[Mu]]*n!*Subscript[\[Delta], n, m]


Maple

Translation
sum(((mu)^(x))/(factorial(x))*C[n](x ; mu)* C[m](x ; mu), x = 0..infinity) = (mu)^(- n)* exp(mu)*factorial(n)*delta[n, m]
Expected (Gold Entry)