Gold 64

From LaTeX CAS translator demo
Jump to navigation Jump to search

Meixner polynomials

Gold ID
64
Link
https://sigir21.wmflabs.org/wiki/Meixner_polynomials#math.116.0
Formula
Mn(x,β,γ)=k=0n(1)k(nk)(xk)k!(x+β)nkγk
TeX Source
M_n(x,\beta,\gamma) = \sum_{k=0}^n (-1)^k{n \choose k}{x\choose k}k!(x+\beta)_{n-k}\gamma^{-k}
Translation Results
Semantic LaTeX Mathematica Translation Maple Translations
No No -

Semantic LaTeX

Translation
M_n(x , \beta , \gamma) = \sum_{k=0}^n(- 1)^k{n \choose k}{x\choose k} k! \Pochhammersym{x + \beta}{n-k} \gamma^{-k}
Expected (Gold Entry)
\MeixnerpolyM{n}@{x}{\beta}{\gamma} = \sum_{k=0}^n(- 1)^k{n \choose k}{x\choose k} k! \Pochhammersym{x + \beta}{n-k} \gamma^{-k}


Mathematica

Translation
Subscript[\[CapitalMu], n][x , \[Beta], \[Gamma]] == Sum[(- 1)^(k)*Binomial[n,k]*Binomial[x,k]*(k)!*Pochhammer[x + \[Beta], n - k]*\[Gamma]^(- k), {k, 0, n}, GenerateConditions->None]
Expected (Gold Entry)
M[n_, x_, \[Beta]_, \[Gamma]_] := Sum[(- 1)^(k)*Binomial[n,k]*Binomial[x,k]*(k)!*Pochhammer[x + \[Beta], n - k]*\[Gamma]^(- k), {k, 0, n}]


Maple

Translation
Mu[n](x , beta , gamma) = sum((- 1)^(k)*binomial(n,k)*binomial(x,k)*factorial(k)*pochhammer(x + beta, n - k)*(gamma)^(- k), k = 0..n)
Expected (Gold Entry)