Gold 68

From LaTeX CAS translator demo
Jump to navigation Jump to search

Stieltjes–Wigert polynomials

Gold ID
68
Link
https://sigir21.wmflabs.org/wiki/Stieltjes–Wigert_polynomials#math.120.0
Formula
w(x)=kπx1/2exp(k2log2x)
TeX Source
w(x) = \frac{k}{\sqrt{\pi}} x^{-1/2} \exp(-k^2\log^2 x)
Translation Results
Semantic LaTeX Mathematica Translation Maple Translations
Yes No No

Semantic LaTeX

Translation
w(x) = \frac{k}{\sqrt{\cpi}} x^{-1/2} \exp(- k^2 \log^2 x)
Expected (Gold Entry)
w(x) = \frac{k}{\sqrt{\cpi}} x^{-1/2} \exp(- k^2 \log^2 x)


Mathematica

Translation
w[x] == Divide[k,Sqrt[Pi]]*(x)^(- 1/2)* Exp[- (k)^(2)* (Log[x])^(2)]
Expected (Gold Entry)
w[x_] := Divide[k,Sqrt[Pi]]*(x)^(- 1/2)* Exp[- (k)^(2)* (Log[x])^(2)]


Maple

Translation
w(x) = (k)/(sqrt(Pi))*(x)^(- 1/2)* exp(- (k)^(2)* (log(x))^(2))
Expected (Gold Entry)
w := (x) -> (k)/(sqrt(Pi))*(x)^(- 1/2)* exp(- (k)^(2)* (log(x))^(2))