Gold 68
Jump to navigation
Jump to search
Stieltjes–Wigert polynomials
- Gold ID
- 68
- Link
- https://sigir21.wmflabs.org/wiki/Stieltjes–Wigert_polynomials#math.120.0
- Formula
- TeX Source
w(x) = \frac{k}{\sqrt{\pi}} x^{-1/2} \exp(-k^2\log^2 x)
Translation Results | ||
---|---|---|
Semantic LaTeX | Mathematica Translation | Maple Translations |
Semantic LaTeX
- Translation
w(x) = \frac{k}{\sqrt{\cpi}} x^{-1/2} \exp(- k^2 \log^2 x)
- Expected (Gold Entry)
w(x) = \frac{k}{\sqrt{\cpi}} x^{-1/2} \exp(- k^2 \log^2 x)
Mathematica
- Translation
w[x] == Divide[k,Sqrt[Pi]]*(x)^(- 1/2)* Exp[- (k)^(2)* (Log[x])^(2)]
- Expected (Gold Entry)
w[x_] := Divide[k,Sqrt[Pi]]*(x)^(- 1/2)* Exp[- (k)^(2)* (Log[x])^(2)]
Maple
- Translation
w(x) = (k)/(sqrt(Pi))*(x)^(- 1/2)* exp(- (k)^(2)* (log(x))^(2))
- Expected (Gold Entry)
w := (x) -> (k)/(sqrt(Pi))*(x)^(- 1/2)* exp(- (k)^(2)* (log(x))^(2))