Gold 7

From LaTeX CAS translator demo
Jump to navigation Jump to search

Logarithmic integral function

Gold ID
7
Link
https://sigir21.wmflabs.org/wiki/Logarithmic_integral_function#math.57.2
Formula
li(x)=limε0+(01εdtlnt+1+εxdtlnt)
TeX Source
\operatorname{li}(x) = \lim_{\varepsilon \to 0+} \left( \int_0^{1-\varepsilon} \frac{dt}{\ln t} + \int_{1+\varepsilon}^x \frac{dt}{\ln t} \right)
Translation Results
Semantic LaTeX Mathematica Translation Maple Translations
Yes Yes Yes

Semantic LaTeX

Translation
\logint@{x} = \lim_{\varepsilon \to 0+}(\int_0^{1-\varepsilon} \frac{\diff{t}}{\ln t} + \int_{1+\varepsilon}^x \frac{\diff{t}}{\ln t})
Expected (Gold Entry)
\logint@{x} = \lim_{\varepsilon \to 0+}(\int_0^{1-\varepsilon} \frac{\diff{t}}{\ln t} + \int_{1+\varepsilon}^x \frac{\diff{t}}{\ln t})


Mathematica

Translation
LogIntegral[x] == Limit[Integrate[Divide[1,Log[t]], {t, 0, 1 - \[CurlyEpsilon]}, GenerateConditions->None]+ Integrate[Divide[1,Log[t]], {t, 1 + \[CurlyEpsilon], x}, GenerateConditions->None], \[CurlyEpsilon] -> 0, Direction -> "FromAbove", GenerateConditions->None]
Expected (Gold Entry)
LogIntegral[x] == Limit[Integrate[Divide[1,Log[t]], {t, 0, 1 - \[CurlyEpsilon]}]+ Integrate[Divide[1,Log[t]], {t, 1 + \[CurlyEpsilon], x}], \[CurlyEpsilon] -> 0, Direction -> "FromAbove"]


Maple

Translation
Li(x) = limit(int((1)/(ln(t)), t = 0..1 - varepsilon)+ int((1)/(ln(t)), t = 1 + varepsilon..x), varepsilon = 0, right)
Expected (Gold Entry)
Li(x) = limit(int((1)/(ln(t)), t = 0..1 - varepsilon)+ int((1)/(ln(t)), t = 1 + varepsilon..x), varepsilon = 0, right)