Gold 83

From LaTeX CAS translator demo
Jump to navigation Jump to search

Big q-Laguerre polynomials

Gold ID
83
Link
https://sigir21.wmflabs.org/wiki/Big_q-Laguerre_polynomials#math.137.0
Formula
Pn(x;a,b;q)=1(b1*qn;q,n)*2Φ1(qn,aqx1;aq|q;xb)
TeX Source
P_n(x;a,b;q)=\frac{1}{(b^{-1}*q^{-n};q,n)}*_2\Phi_1(q^{-n},aqx^{-1};aq|q;\frac{x}{b})
Translation Results
Semantic LaTeX Mathematica Translation Maple Translations
No No -

Semantic LaTeX

Translation
P_n(x;a,b;q)=\frac{1}{(b^{-1}*q^{-n};q,n)}*_2\Phi_1(q^{-n},aqx^{-1};aq|q;\frac{x}{b})
Expected (Gold Entry)
P_n(x;a,b;q) =\frac{1}{\qmultiPochhammersym{b^{-1}*q^{-n}}{q}{n}} * \qgenhyperphi{2}{1}@{q^{-n},aqx^{-1}}{aq}{q}{\frac{x}{b}}


Mathematica

Translation
Expected (Gold Entry)
P[n_, x_, a_, b_, q_] := Divide[1,Product[QPochhammer[Part[{(b)^(- 1)* (q)^(- n)},i],q,n],{i,1,Length[{(b)^(- 1)* (q)^(- n)}]}]]* QHypergeometricPFQ[{(q)^(- n), a*q*(x)^(- 1)},{a*q},q,Divide[x,b]]


Maple

Translation
Expected (Gold Entry)