Gold 89

From LaTeX CAS translator demo
Jump to navigation Jump to search

Q-Meixner–Pollaczek polynomials

Gold ID
89
Link
https://sigir21.wmflabs.org/wiki/Q-Meixner–Pollaczek_polynomials#math.145.0
Formula
Pn(x;aq)=aneinϕa2;qn(q;q)n3Φ2(qn,aei(θ+2ϕ),aeiθ;a2,0q;q)
TeX Source
P_{n}(x;a\mid q) = a^{-n} e^{in\phi} \frac{a^2;q_n}{(q;q)_n} {_3}\Phi_2(q^-n, ae^{i(\theta+2\phi)}, ae^{-i\theta}; a^2, 0 \mid q; q)
Translation Results
Semantic LaTeX Mathematica Translation Maple Translations
No No -

Semantic LaTeX

Translation
P_{n}(x ; a \mid q) = a^{-n} \expe^{in\phi} \frac{a^2;q_n}{\qmultiPochhammersym{q}{q}{n}}{_3} \Phi_2(q^- n , a \expe^{\iunit(\theta + 2 \phi)} , a \expe^{- \iunit \theta} ; a^2 , 0 \mid q ; q)
Expected (Gold Entry)
P_{n}(x ; a \mid q) = a^{-n} \expe^{\iunit n\phi} \frac{\qmultiPochhammersym{a^2}{q}{n}}{\qmultiPochhammersym{q}{q}{n}} \qgenhyperphi{3}{2}@{q^- n , a\expe^{\iunit(\theta + 2 \phi)} , a\expe^{- \iunit \theta}}{a^2, 0}{q}{q}


Mathematica

Translation
Expected (Gold Entry)
P[n_, x_, a_, q_] := (a)^(- n)* Exp[I*n*\[Phi]]*Divide[Product[QPochhammer[Part[{(a)^(2)},i],q,n],{i,1,Length[{(a)^(2)}]}],Product[QPochhammer[Part[{q},i],q,n],{i,1,Length[{q}]}]]*QHypergeometricPFQ[{(q)^(-)* n , a*Exp[I*(\[Theta]+ 2*\[Phi])], a*Exp[- I*\[Theta]]},{(a)^(2), 0},q,q]


Maple

Translation
Expected (Gold Entry)