Gold 91

From LaTeX CAS translator demo
Jump to navigation Jump to search

Continuous q-Hermite polynomials

Gold ID
91
Link
https://sigir21.wmflabs.org/wiki/Continuous_q-Hermite_polynomials#math.150.3
Formula
n=0Hn(xq)tn(q;q)n=1(teiθ,teiθ;q)
TeX Source
\sum_{n=0}^\infty H_n(x \mid q) \frac{t^n}{(q;q)_n} = \frac{1}{\left( t e^{i \theta},t e^{-i \theta};q \right)_\infty}
Translation Results
Semantic LaTeX Mathematica Translation Maple Translations
No - -

Semantic LaTeX

Translation
\sum_{n=0}^\infty \HermitepolyH{n}@{x \mid q} \frac{t^n}{(q;q)_n} = \frac{1}{(t \expe^{\iunit \theta} , t \expe^{- \iunit \theta} ; q)_\infty}
Expected (Gold Entry)
\sum_{n=0}^\infty \contqHermitepolyH{n}@{x}{q} \frac{t^n}{\qmultiPochhammersym{q}{q}{n}} = \frac{1}{\qmultiPochhammersym{t \expe^{\iunit \theta} , t \expe^{- \iunit \theta}}{q}{\infty}}


Mathematica

Translation
Expected (Gold Entry)


Maple

Translation
Expected (Gold Entry)