Gold 95

From LaTeX CAS translator demo
Jump to navigation Jump to search

Incomplete Bessel K function/generalized incomplete gamma function

Gold ID
95
Link
https://sigir21.wmflabs.org/wiki/Incomplete_Bessel_K_function/generalized_incomplete_gamma_function#math.154.0
Formula
Kv(x,y)=1extyttv+1dt
TeX Source
K_v(x,y)=\int_1^\infty\frac{e^{-xt-\frac{y}{t}}}{t^{v+1}}dt
Translation Results
Semantic LaTeX Mathematica Translation Maple Translations
Yes No -

Semantic LaTeX

Translation
K_v(x , y) = \int_1^\infty \frac{\expe^{-xt-\frac{y}{t}}}{t^{v+1}} \diff{t}
Expected (Gold Entry)
K_v(x , y) = \int_1^\infty \frac{\expe^{-xt-\frac{y}{t}}}{t^{v+1}} \diff{t}


Mathematica

Translation
Subscript[\[CapitalKappa], v][x , y] == Integrate[Divide[Exp[- x*t -Divide[y,t]],(t)^(v + 1)], {t, 1, Infinity}, GenerateConditions->None]
Expected (Gold Entry)
K[v_, x_, y_] := Integrate[Divide[Exp[- x*t -Divide[y,t]],(t)^(v + 1)], {t, 1, Infinity}]


Maple

Translation
Kappa[v](x , y) = int((exp(- x*t -(y)/(t)))/((t)^(v + 1)), t = 1..infinity)
Expected (Gold Entry)