Gold 95
Jump to navigation
Jump to search
Incomplete Bessel K function/generalized incomplete gamma function
- Gold ID
- 95
- Link
- https://sigir21.wmflabs.org/wiki/Incomplete_Bessel_K_function/generalized_incomplete_gamma_function#math.154.0
- Formula
- TeX Source
K_v(x,y)=\int_1^\infty\frac{e^{-xt-\frac{y}{t}}}{t^{v+1}}dt
Translation Results | ||
---|---|---|
Semantic LaTeX | Mathematica Translation | Maple Translations |
- |
Semantic LaTeX
- Translation
K_v(x , y) = \int_1^\infty \frac{\expe^{-xt-\frac{y}{t}}}{t^{v+1}} \diff{t}
- Expected (Gold Entry)
K_v(x , y) = \int_1^\infty \frac{\expe^{-xt-\frac{y}{t}}}{t^{v+1}} \diff{t}
Mathematica
- Translation
Subscript[\[CapitalKappa], v][x , y] == Integrate[Divide[Exp[- x*t -Divide[y,t]],(t)^(v + 1)], {t, 1, Infinity}, GenerateConditions->None]
- Expected (Gold Entry)
K[v_, x_, y_] := Integrate[Divide[Exp[- x*t -Divide[y,t]],(t)^(v + 1)], {t, 1, Infinity}]
Maple
- Translation
Kappa[v](x , y) = int((exp(- x*t -(y)/(t)))/((t)^(v + 1)), t = 1..infinity)
- Expected (Gold Entry)