Lamé function

From LaTeX CAS translator demo
Jump to navigation Jump to search

In mathematics, a Lamé function, or ellipsoidal harmonic function, is a solution of Lamé's equation, a second-order ordinary differential equation. It was introduced in the paper (Gabriel Lamé 1837). Lamé's equation appears in the method of separation of variables applied to the Laplace equation in elliptic coordinates. In some special cases solutions can be expressed in terms of polynomials called Lamé polynomials.

The Lamé equation

Lamé's equation is

d2ydx2+(A+B(x))y=0,

where A and B are constants, and is the Weierstrass elliptic function. The most important case is when B(x)=κ2sn2x, where sn is the elliptic sine function, and κ2=n(n+1)k2 for an integer n and k the elliptic modulus, in which case the solutions extend to meromorphic functions defined on the whole complex plane. For other values of B the solutions have branch points.

By changing the independent variable to t with t=snx, Lamé's equation can also be rewritten in algebraic form as

d2ydt2+12(1te1+1te2+1te3)dydtA+Bt4(te1)(te2)(te3)y=0,

which after a change of variable becomes a special case of Heun's equation.

A more general form of Lamé's equation is the ellipsoidal equation or ellipsoidal wave equation which can be written (observe we now write Λ, not A as above)

d2ydx2+(Λκ2sn2xΩ2k4sn4x)y=0,

where k is the elliptic modulus of the Jacobian elliptic functions and κ and Ω are constants. For Ω=0 the equation becomes the Lamé equation with Λ=A. For Ω=0,k=0,κ=2h,Λ2h2=λ,x=z±π2 the equation reduces to the Mathieu equation

d2ydz2+(λ2h2cos2z)y=0.

The Weierstrassian form of Lamé's equation is quite unsuitable for calculation (as Arscott also remarks, p. 191). The most suitable form of the equation is that in Jacobian form, as above. The algebraic and trigonometric forms are also cumbersome to use. Lamé equations arise in quantum mechanics as equations of small fluctuations about classical solutions—called periodic instantons, bounces or bubbles—of Schrödinger equations for various periodic and anharmonic potentials.[1][2]

Asymptotic expansions

Asymptotic expansions of periodic ellipsoidal wave functions, and therewith also of Lamé functions, for large values of κ have been obtained by Müller.[3][4][5] The asymptotic expansion obtained by him for the eigenvalues Λ is, with q approximately an odd integer (and to be determined more precisely by boundary conditions – see below),

Λ(q)=qκ123(1+k2)(q2+1)q26κ{(1+k2)2(q2+3)4k2(q2+5)}1210κ2{(1+k2)3(5q4+34q2+9)4k2(1+k2)(5q4+34q2+9)384Ω2k4(q2+1)},

(another (fifth) term not given here has been calculated by Müller, the first three terms have also been obtained by Ince[6]). Observe terms are alternately even and odd in q and κ (as in the corresponding calculations for Mathieu functions, and oblate spheroidal wave functions and prolate spheroidal wave functions). With the following boundary conditions (in which K(k) is the quarter period given by a complete elliptic integral)

Ec(2K)=Ec(0)=0,Es(2K)=Es(0)=0,

as well as (the prime meaning derivative)

(Ec)2K'=(Ec)0'=0,(Es)2K'=(Es)0'=0,

defining respectively the ellipsoidal wave functions

Ecnq0,Esnq0+1,Ecnq01,Esnq0

of periods 4K,2K,2K,4K, and for q0=1,3,5, one obtains

qq0=22π(1+k1k)κ/k(8κ1k2)q0/21[(q01)/2]![13(q02+1)(1+k2)25κ+].

Here the upper sign refers to the solutions Ec and the lower to the solutions Es. Finally expanding Λ(q) about q0, one obtains

Λ±(q)Λ(q0)+(qq0)(Λq)q0+=Λ(q0)+(qq0)κ[1q0(1+k2)22κ126κ2{3(1+k2)2(q02+1)4k2(q02+2q0+5)}+]Λ(q0)2κ2π(1+k1k)κ/k(8κ1k2)q0/21[(q01)/2]![1125κ(1+k2)(3q02+8q0+3)+13.211κ2{3(1+k2)2(9q04+8q0378q0288q087)+128k2(2q03+9q02+10q0+15)}].

In the limit of the Mathieu equation (to which the Lamé equation can be reduced) these expressions reduce to the corresponding expressions of the Mathieu case (as shown by Müller).

Notes

  1. H. J. W. Müller-Kirsten, Introduction to Quantum Mechanics: Schrödinger Equation and Path Integral, 2nd ed. World Scientific, 2012, ISBN 978-981-4397-73-5
  2. Liang, Jiu-Qing; Müller-Kirsten, H.J.W.; Tchrakian, D.H. (1992). "Solitons, bounces and sphalerons on a circle". Physics Letters B. Elsevier BV. 282 (1–2): 105–110. doi:10.1016/0370-2693(92)90486-n. ISSN 0370-2693.
  3. W. Müller, Harald J. (1966). "Asymptotic Expansions of Ellipsoidal Wave Functions and their Characteristic Numbers". Mathematische Nachrichten (in Deutsch). Wiley. 31 (1–2): 89–101. doi:10.1002/mana.19660310108. ISSN 0025-584X.
  4. Müller, Harald J. W. (1966). "Asymptotic Expansions of Ellipsoidal Wave Functions in Terms of Hermite Functions". Mathematische Nachrichten (in Deutsch). Wiley. 32 (1–2): 49–62. doi:10.1002/mana.19660320106. ISSN 0025-584X.
  5. Müller, Harald J. W. (1966). "On Asymptotic Expansions of Ellipsoidal Wave Functions". Mathematische Nachrichten (in Deutsch). Wiley. 32 (3–4): 157–172. doi:10.1002/mana.19660320305. ISSN 0025-584X.
  6. Ince, E. L. (1940). "VII—Further Investigations into the Periodic Lamé Functions". Proceedings of the Royal Society of Edinburgh. Cambridge University Press (CUP). 60 (1): 83–99. doi:10.1017/s0370164600020071. ISSN 0370-1646.

References