Poject:GoldData

From LaTeX CAS translator demo
Revision as of 12:11, 8 February 2021 by Admin (talk | contribs) (Redirected page to wmf:Privacy policy)
Jump to navigation Jump to search

Download gold-data.json.

Entry Info Translations Reason For Failure
# Formula Title Semantic LaTeX CAS Translations Definition / Substitution Pattern Matching Derivatives / Primes Missing Infos Untranslatable Macro Explanation Evaluation Data
1 \begin{align}J_{-(m+\frac{1}{2})}(x) &= (-1)^{m+1} Y_{m+\frac{1}{2}}(x), \\Y_{-(m+\frac{1}{2})}(x) &= (-1)^m J_{m+\frac{1}{2}}(x).\end{align} Bessel function Yes Yes - - - - - -
Full data:
2 E(e) \,=\, \int_0^{\pi/2}\sqrt {1 - e^2 \sin^2\theta}\ d\theta Ellipse No No - ☒N - - - e was interpreted as Euler's number
Full data:
3 F(x;k) = u Elliptic integral No No ☒N - - - - x is substituted
Full data:
4 \frac{1}{\Gamma(z)} = \frac{i}{2\pi}\int_C (-t)^{-z}e^{-t}\,dt Gamma function Yes - - ☒N - - - Contour integrals cannot be translated.
Full data:
5 2^{4} = 2 \times2 \times 2 \times 2 = 16 Logarithm Yes Yes - - - - - -
Full data:
6 \psi(x) := \sum_{n=1}^\infty e^{-n^2 \pi x} Riemann zeta function Yes Yes - - - - - -
Full data:
7 \operatorname{li}(x) = \lim_{\varepsilon \to 0+} \left( \int_0^{1-\varepsilon} \frac{dt}{\ln t} + \int_{1+\varepsilon}^x \frac{dt}{\ln t} \right) Logarithmic integral function Yes Yes - - - - - -
Full data:
8 w_{i} = \frac{1}{p'_{n}(x_{i})}\int_{a}^{b}\omega(x)\frac{p_{n}(x)}{x-x_{i}}dx Gaussian quadrature Yes No - - ☒N - - -
Full data:
9 \begin{align}x & =ue^u, \\[5pt]\frac{dx}{du} & =(u+1)e^u.\end{align} Lambert W function No No ☒N - - - - -
Full data:
10 \frac{1}{\left| \mathbf{x}-\mathbf{x}' \right|} = \frac{1}{\sqrt{r^2+{r'}^2-2r{r'}\cos\gamma}} = \sum_{\ell=0}^\infty \frac{{r'}^\ell}{r^{\ell+1}} P_\ell(\cos \gamma) Legendre polynomials Yes No - - ☒N - - -
Full data:
11 \operatorname{erf}^{(k)}(z) = \frac{2 (-1)^{k-1}}{\sqrt{\pi}} \mathit{H}_{k-1}(z) e^{-z^2} = \frac{2}{\sqrt{\pi}} \frac{d^{k-1}}{dz^{k-1}} \left(e^{-z^2}\right),\qquad k=1, 2, \dots Error function Yes No - - ☒N - - erf(k) was not detected as k-th derivative but as power.
Full data:
12 x_k = \cos\left(\frac{\pi(k+1/2)}{n}\right),\quad k=0,\ldots,n-1 Chebyshev polynomials Yes Yes - - - - - -
Full data:
13 E(x, y; u) := \sum_{n=0}^\infty u^n \, \psi_n (x) \, \psi_n (y) = \frac{1}{\sqrt{\pi (1 - u^2)}} \, \exp\left(-\frac{1 - u}{1 + u} \, \frac{(x + y)^2}{4} - \frac{1 + u}{1 - u} \, \frac{(x - y)^2}{4}\right) Hermite polynomials Yes Yes - - - - - -
Full data:
14 x = \pm 1 Legendre function Yes Yes - - - - - -
Full data:
15 E_n=2^nE_n(\tfrac{1}{2}) Bernoulli polynomials No No - ☒N - - - Both E where detected as Euler's number but the second is Euler polynomial.
Full data:
16 \operatorname{Si}(ix) = i\operatorname{Shi}(x) Trigonometric integral No No ☒N - - - - There was no dependency between this function and the definition of Shi above.
Full data:
17 f(z)=\frac{1}{\Beta(x,y)} Beta function No No ☒N - - ☒N - The original formula contained f(z) but should have been f(x,z). This was fixed in the Wikipedia article after we generated the dataset.
Full data:
18 \begin{align}\int x^m e^{ix^n}\,dx & =\frac{x^{m+1}}{m+1}\,_1F_1\left(\begin{array}{c} \frac{m+1}{n}\\1+\frac{m+1}{n}\end{array}\mid ix^n\right) \\[6px]& =\frac{1}{n} i^\frac{m+1}{n}\gamma\left(\frac{m+1}{n},-ix^n\right),\end{align} Fresnel integral No No - ☒N - - - Matrix argument of 1F1 does not exist in the DLMF.
Full data:
19 T_n(x) = \frac{\Gamma(1/2)\sqrt{1-x^2}}{(-2)^n\,\Gamma(n+1/2)} \ \frac{d^n}{dx^n}\left([1-x^2]^{n-1/2}\right) Classical orthogonal polynomials No No - - - ☒N - No info about Gamma function.
Full data:
20 {}_1F_0(1;;z) = \sum_{n \geqslant 0} z^n = (1-z)^{-1} Generalized hypergeometric function No No - ☒N - - - Empty arguments did not match the semantic macros (bug).
Full data:
21 \chi(-1) = 1 Dirichlet L-function Yes No - - - ☒N - It was translated to DirichletCharacter[1, k, - 1] == 1. The only valid input for k is 1.
Full data:
22 \operatorname{Bi}'(z)\sim \frac{z^{\frac{1}{4}}e^{\frac{2}{3}z^{\frac{3}{2}}}}{\sqrt\pi\,}\left[ \sum_{n=0}^{\infty}\frac{1+6n}{1-6n} \dfrac{ \Gamma(n+\frac{5}{6})\Gamma(n+\frac{1}{6})\left(\frac{3}{4}\right)^n}{2\pi n! z^{3n/2}} \right] Airy function No - - - ☒N - - No translation possible for \sim
Full data:
23 F'(y)=1-2yF(y) Dawson function No No - - ☒N ☒N - No dependency to Dawson.
Full data:
24 s\not =1 Hurwitz zeta function Yes Yes - - - - - -
Full data:
25 q = e^{i\pi\tau} Theta function Yes Yes - - - - - -
Full data:
26 \frac{\mathrm{d}}{\mathrm{d}z} \operatorname{dn}(z) = - k^2 \operatorname{sn}(z) \operatorname{cn}(z) Jacobi elliptic functions Yes Yes - - - - - -
Full data:
27 \int_{-\infty}^\infty \frac {\gamma\left(\frac s 2, z^2 \pi \right)} {(z^2 \pi)^\frac s 2} e^{-2 \pi i k z} \mathrm d z = \frac {\Gamma\left(\frac {1-s} 2, k^2 \pi \right)} {(k^2 \pi)^\frac {1-s} 2} Incomplete gamma function Yes Yes - - - - - -
Full data:
28 _{1}(z) = Polylogarithm No No - - - - - Wrong math detection.
Full data:
29 \int_{-\infty}^\infty \operatorname{sinc}(t) \, e^{-i 2 \pi f t}\,dt = \operatorname{rect}(f) Sinc function Yes Yes - - - - - -
Full data:
30 N=1 Exponential integral Yes Yes - - - - - -
Full data:
31 \sum_{n=0}^\infty \frac{n!\,\Gamma\left(\alpha + 1\right)}{\Gamma\left(n+\alpha+1\right)}L_n^{(\alpha)}(x)L_n^{(\alpha)}(y)t^n=\frac{1}{(1-t)^{\alpha + 1}}e^{-(x+y)t/(1-t)}\,_0F_1\left(;\alpha + 1;\frac{xyt}{(1-t)^2}\right) Laguerre polynomials No No - - - ☒N - No infos about the gamma function.
Full data:
32 c_{lm} = (-1)^m \frac{(\ell-m)!}{(\ell+m)!} Associated Legendre polynomials Yes Yes - - - - - -
Full data:
33 \mathrm{Gi}(x) = \frac{1}{\pi} \int_0^\infty \sin\left(\frac{t^3}{3} + xt\right)\, dt Scorer's function Yes Yes - - - - - -
Full data:
34 \frac{\partial^2}{\partial x^2} V(x;\sigma,\gamma)= \frac{x^2-\gamma^2-\sigma^2}{\sigma^4} \frac{\operatorname{Re}[w(z)]}{\sigma\sqrt{2 \pi}}-\frac{2 x \gamma}{\sigma^4} \frac{\operatorname{Im}[w(z)]}{\sigma\sqrt{2 \pi}}+\frac{\gamma}{\sigma^4}\frac{1}{\pi} Voigt profile Yes No - - - - ☒N -
Full data:
35 \Phi(z,s,a) = \frac{1}{1-z} \frac{1}{a^{s}} + \sum_{n=1}^{N-1} \frac{(-1)^{n} \mathrm{Li}_{-n}(z)}{n!} \frac{(s)_{n}}{a^{n+s}} +O(a^{-N-s}) Lerch zeta function No No - - - - ☒N Landau notation.
Full data:
36 M(1,2,z)=(e^z-1)/z,\ \ M(1,3,z)=2!(e^z-1-z)/z^2 Confluent hypergeometric function Yes Yes - - - - - -
Full data:
37 \sigma = \pm 1 Mathieu function Yes Yes - - - - - -
Full data:
38 \frac{d^2f}{dz^2} + \left(\tilde{a}z^2+\tilde{b}z+\tilde{c}\right)f=0 Parabolic cylinder function Yes No - - - ☒N - ODE. f does not show the argument z.
Full data:
39 c=\infty Painlevé transcendents Yes Yes - - - - - -
Full data:
40 c = a + 1 Hypergeometric function Yes Yes - - - - - -
Full data:
41 \frac{1}{\Gamma(z)}= z e^{\gamma z} \prod_{k=1}^\infty \left\{ \left(1+\frac{z}{k}\right)e^{-z/k} \right\} Barnes G-function Yes Yes - - - - - -
Full data:
42 192/24 = 8 = 2 \times 4 Heun function Yes Yes - - - - - -
Full data:
43 =2 Gegenbauer polynomials No No - - - - - Wrong math detection.
Full data:
44 \lim_{q\to 1}\;_{j}\phi_k \left[\begin{matrix} q^{a_1} & q^{a_2} & \ldots & q^{a_j} \\ q^{b_1} & q^{b_2} & \ldots & q^{b_k} \end{matrix} ; q,(q-1)^{1+k-j} z \right]=\;_{j}F_k \left[\begin{matrix} a_1 & a_2 & \ldots & a_j \\ b_1 & b_2 & \ldots & b_k \end{matrix} ;z \right] Basic hypergeometric series No No - ☒N - - - Matrix argument does not exist in DLMF.
Full data:
45 \frac{d^2w}{dz^2}+\left(-\frac{1}{4}+\frac{\kappa}{z}+\frac{1/4-\mu^2}{z^2}\right)w=0 Whittaker function Yes Yes - - - - - -
Full data:
46 e_1=\tfrac12,\qquad e_2=0,\qquad e_3=-\tfrac12 Lemniscatic elliptic function Yes No - - - - - Multi-equation problem (bug).
Full data:
47 \gamma> 0,n-p=m-q> 0 Meijer G-function Yes Yes - - - - - -
Full data:
48 \begin{pmatrix} j \\ m \quad m'\end{pmatrix}:= \sqrt{2 j + 1}\begin{pmatrix} j & 0 & j \\ m & 0 & m'\end{pmatrix}= (-1)^{j - m'} \delta_{m, -m'} 3-j symbol Yes No - - - - - LCT does not support matrix translations yet.
Full data:
49 \begin{Bmatrix} i & j & \ell\\ k & m & n \end{Bmatrix}= (\Phi_{i,j}^{k,m})_{\ell,n} 6-j symbol No No - - - ☒N - RHS mistakenly translated as Pochhammer symbol.
Full data:
50 \sum_{j_7 j_8} (2j_7+1)(2j_8+1) \begin{Bmatrix} j_1 & j_2 & j_3\\ j_4 & j_5 & j_6\\ j_7 & j_8 & j_9 \end{Bmatrix} \begin{Bmatrix} j_1 & j_2 & j_3'\\ j_4 & j_5 & j_6'\\ j_7 & j_8 & j_9 \end{Bmatrix} = \frac{\delta_{j_3j_3'}\delta_{j_6j_6'} \begin{Bmatrix} j_1 & j_2 & j_3 \end{Bmatrix} \begin{Bmatrix} j_4 & j_5 & j_6\end{Bmatrix} \begin{Bmatrix} j_3 & j_6 & j_9 \end{Bmatrix}} {(2j_3+1)(2j_6+1)} 9-j symbol No No - - - - - Mistakenly interpreted as Wigner 6-j rather than 9-j.
Full data:
51 \mathcal{K}_k(x; n,q) = \sum_{j=0}^{k}(-q)^j (q-1)^{k-j} \binom {n-j}{k-j} \binom{x}{j} Kravchuk polynomials No No - - - ☒N - Krawtchouk vs Kravchuk (synonym problem)
Full data:
52 g_1(x) = \sum_{k \geq 1} \frac{\sin(k \pi / 4)}{k! (8x)^k} \prod_{l = 1}^k (2l - 1)^2 Kelvin functions Yes No ☒N - - - - -
Full data:
53 S_{\mu,\nu}(z) = s_{\mu,\nu}(z) + 2^{\mu-1} \Gamma\left(\frac{\mu + \nu + 1}{2}\right) \Gamma\left(\frac{\mu - \nu + 1}{2}\right)\left(\sin \left[(\mu - \nu)\frac{\pi}{2}\right] J_\nu(z) - \cos \left[(\mu - \nu)\frac{\pi}{2}\right] Y_\nu(z)\right) Lommel function No No - - - ☒N - No information about gamma function
Full data:
54 \mathbf{H}_{\alpha}(z) = \frac{z^{\alpha+1}}{2^{\alpha}\sqrt{\pi} \Gamma \left (\alpha+\tfrac{3}{2} \right )} {}_1F_2 \left (1,\tfrac{3}{2}, \alpha+\tfrac{3}{2},-\tfrac{z^2}{4} \right ) Struve function No No - ☒N - - - Arguments of 1F2 are split by commas. That is wrong notation. Hence, our semantic patterns did not match.
Full data:
55 f(t+p) = f(t) Hill differential equation Yes Yes - - - - - -
Full data:
56 \mathbf{J}_\nu(z)=\cos\frac{\pi\nu}{2}\sum_{k=0}^\infty\frac{(-1)^kz^{2k}}{4^k\Gamma\left(k+\frac{\nu}{2}+1\right)\Gamma\left(k-\frac{\nu}{2}+1\right)}+\sin\frac{\pi\nu}{2}\sum_{k=0}^\infty\frac{(-1)^kz^{2k+1}}{2^{2k+1}\Gamma\left(k+\frac{\nu}{2}+\frac{3}{2}\right)\Gamma\left(k-\frac{\nu}{2}+\frac{3}{2}\right)} Anger function No No - - - ☒N - No information about gamma function.
Full data:
57 (\operatorname{Ec})^'_{2K} = (\operatorname{Ec})^'_0 = 0, \;\; (\operatorname{Es})^'_{2K} = (\operatorname{Es})^'_0 = 0 Lamé function Yes - - - - - - No translation possible.
Full data:
58 \int_{-\infty}^{+\infty} e^{-x^2} f(x)\,dx \approx \sum_{i=1}^n w_i f(x_i) Gauss–Hermite quadrature Yes - - - - - - No translation possible.
Full data:
59 p_n(x;a,b,c,d|q) =(ab,ac,ad;q)_na^{-n}\;_{4}\phi_3 \left[\begin{matrix} q^{-n}&abcdq^{n-1}&ae^{i\theta}&ae^{-i\theta} \\ ab&ac&ad \end{matrix} ; q,q \right] Askey–Wilson polynomials No No ☒N - - - - Could not extract the name Askey-Wilson polynomials.
Full data:
60 Q_n(x;\alpha,\beta,N)= {}_3F_2(-n,-x,n+\alpha+\beta+1;\alpha+1,-N+1;1). Hahn polynomials Yes No ☒N - - - ☒N -
Full data:
61 \sum_{x=0}^\infty \frac{\mu^x}{x!} C_n(x; \mu)C_m(x; \mu)=\mu^{-n} e^\mu n! \delta_{nm}, \quad \mu>0 Charlier polynomials No No - - - ☒N - Did not found Charlier polynomial.
Full data:
62 p_n(q^{-x}+q^{x+1}cd;a,b,c,d;q) = {}_4\phi_3\left[\begin{matrix} q^{-n} &abq^{n+1}&q^{-x}&q^{x+1}cd\\aq&bdq&cq\\ \end{matrix};q;q\right] Q-Racah polynomials No No - - - ☒N - Did not find q-Recah polynomial.
Full data:
63 \displaystyle c_n(q^{-x};a;q) = {}_2\phi_1(q^{-n},q^{-x};0;q,-q^{n+1}/a) Q-Charlier polynomials Yes - - - - - - -
Full data:
64 M_n(x,\beta,\gamma) = \sum_{k=0}^n (-1)^k{n \choose k}{x\choose k}k!(x+\beta)_{n-k}\gamma^{-k} Meixner polynomials No No - - - ☒N - Did not find Meixner.
Full data:
65 x(1-x) \frac {\partial^2F_1(x,y)} {\partial x^2} + y(1-x) \frac {\partial^2F_1(x,y)} {\partial x \partial y} + [c - (a+b_1+1) x] \frac {\partial F_1(x,y)} {\partial x} - b_1 y \frac {\partial F_1(x,y)} {\partial y} - a b_1 F_1(x,y) = 0 Appell series No No - ☒N - ☒N - Cannot match hidden arguments of Appell F1 function.
Full data:
66 \Theta_\Lambda(\tau) = \sum_{x\in\Lambda}e^{i\pi\tau\|x\|^2}\qquad\mathrm{Im}\,\tau > 0 Theta function of a lattice No No ☒N - - - - -
Full data:
67 \frac{d^2 S}{dz^2}+\left(\sum _{j=1}^N \frac{\gamma _j}{z - a_j} \right) \frac{dS}{dz} + \frac{V(z)}{\prod _{j=1}^N (z - a_j)}S = 0 Heine–Stieltjes polynomials No No - ☒N - - - Mistakenly detected Stieltjes constant.
Full data:
68 w(x) = \frac{k}{\sqrt{\pi}} x^{-1/2} \exp(-k^2\log^2 x) Stieltjes–Wigert polynomials Yes Yes - - - - - -
Full data:
69 y^2=x(x-1)(x-\lambda) Modular lambda function Yes Yes - - - - - -
Full data:
70 P_1^{(\lambda)}(x;\phi)=2(\lambda\cos\phi + x\sin\phi) Meixner–Pollaczek polynomials Yes Yes - - - - - -
Full data:
71 P_n^{(\alpha,\beta)}(z)=\frac{(\alpha+1)_n}{n!}\,{}_2F_1\left(-n,1+\alpha+\beta+n;\alpha+1;\tfrac{1}{2}(1-z)\right) Jacobi polynomials Yes Yes - - - - - -
Full data:
72 S_n(x^2;a,b,c)= {}_3F_2(-n,a+ix,a-ix;a+b,a+c;1). Continuous dual Hahn polynomials Yes - - - - - ☒N -
Full data:
73 P_n^{(\alpha,\beta)}=\lim_{t\to\infty}t^{-n}p_n\left(\tfrac12xt; \tfrac12(\alpha+1-it), \tfrac12(\beta+1+it), \tfrac12(\alpha+1+it), \tfrac12(\beta+1-it)\right) Continuous Hahn polynomials No No - ☒N - ☒N - Hidden argument cause mismatch.
Full data:
74 \sum^{b-1}_{s=a}w_n^{(c)}(s,a,b)w_m^{(c)}(s,a,b)\rho(s)[\Delta x(s-\frac{1}{2}) ]=\delta_{nm}d_n^2 Dual Hahn polynomials No No - ☒N - - - Not standard notation for dual Hahn polynomial. DLMF uses R.
Full data:
75 p_n(x;a,b,c|q)=a^{-n}e^{-inu}(abe^{2iu},ac,ad;q)_n*_4\Phi_3(q^{-n},abcdq^{n-1},ae^{i{(t+2u)}},ae^{-it};abe^{2iu},ac,ad;q;q) Continuous q-Hahn polynomials No No ☒N ☒N - - - Asterisk has index. Wrong LaTeX from Wikipedia Editor.
Full data:
76 p_n(x;a,b,c\mid q)=\frac{(ab,ac;q)_n}{a^n}\cdot {_3\Phi_2}(q^-n,ae^{i\theta},ae^{-i\theta}; ab, ac \mid q;q) Continuous dual q-Hahn polynomials No No ☒N ☒N - - - Underscore mismatch.
Full data:
77 Q_n(x;a,b,N;q)=\;_{3}\phi_2\left[\begin{matrix} q^-n & abq^n+1 & x \\ aq & q^-N \end{matrix} ; q,q \right] Q-Hahn polynomials No No ☒N - - - - Cannot detect name of function.
Full data:
78 x= Al-Salam–Chihara polynomials No No - - - - - Wrong math detection.
Full data:
79 \Phi_n^*(z)=z^n\overline{\Phi_n(1/\overline{z})} Orthogonal polynomials on the unit circle No No - ☒N - - - Nested overline didnt match (bug).
Full data:
80 P_n(x) = c_n \, \det \begin{bmatrix}m_0 & m_1 & m_2 &\cdots & m_n \\m_1 & m_2 & m_3 &\cdots & m_{n+1} \\&&\vdots&& \vdots \\m_{n-1} &m_n& m_{n+1} &\cdots &m_{2n-1}\\1 & x & x^2 & \cdots & x^n\end{bmatrix} Orthogonal polynomials Yes - - - - - - No direct translation possible (indef number of arguments).
Full data:
81 \displaystyle p_n(x;a,b;q) = {}_2\phi_1(q^{-n},abq^{n+1};aq;q,xq) Little q-Jacobi polynomials Yes No ☒N - - - ☒N No translation for \littleJacobipolyp
Full data:
82 \displaystyle P_n(x;a,b,c;q)={}_3\phi_2(q^{-n},abq^{n+1},x;aq,cq;q,q) Big q-Jacobi polynomials Yes No ☒N - - - ☒N No translation for \bigqJacobipolyP
Full data:
83 P_n(x;a,b;q)=\frac{1}{(b^{-1}*q^{-n};q,n)}*_2\Phi_1(q^{-n},aqx^{-1};aq|q;\frac{x}{b}) Big q-Laguerre polynomials No No - ☒N - - - Again, invalid latex. The asterisk has the underscore.
Full data:
84 K_n(\lambda(x);c,N|q)=_3\Phi_2(q^{-n},q^{-x},cq^{x-N};q^{-N},0|q;q) Dual q-Krawtchouk polynomials No No - ☒N - - - Illegal LaTeX. Equal sign has underscore 3 (which is wrong).
Full data:
85 P_{n}^{(\alpha)}(x|q)=\frac{(q^\alpha+1;q)_{n}}{(q;q)_{n}} Continuous q-Laguerre polynomials No No ☒N ☒N - - - Did not detect q-multi Pochhammer symbol.
Full data:
86 \displaystyle p_n(x;a|q) = {}_2\phi_1(q^{-n},0;aq;q,qx) = \frac{1}{(a^{-1}q^{-n};q)_n}{}_2\phi_0(q^{-n},x^{-1};;q,x/a) Little q-Laguerre polynomials No No ☒N ☒N - - - Could not match empty arguments (bug).
Full data:
87 y_{n}(x;a;q)=\;_{2}\phi_1 \left(\begin{matrix} q^{-N} & -aq^{n} \\ 0 \end{matrix} ; q,qx \right) Q-Bessel polynomials No No ☒N ☒N - - - Wrong LaTeX. Equal sign has subsript 2.
Full data:
88 h_n(ix;q^{-1}) = i^n\hat h_n(x;q) Discrete q-Hermite polynomials No No - ☒N - - - We correctly identified \discqHermitepolyhI but were not able to distinguish it from discqHermitepolyhII from RHS.
Full data:
89 P_{n}(x;a\mid q) = a^{-n} e^{in\phi} \frac{a^2;q_n}{(q;q)_n} {_3}\Phi_2(q^-n, ae^{i(\theta+2\phi)}, ae^{-i\theta}; a^2, 0 \mid q; q) Q-Meixner–Pollaczek polynomials No No ☒N ☒N - - - Did not match underscore {_3}
Full data:
90 \displaystyle L_n^{(\alpha)}(x;q) = \frac{(q^{\alpha+1};q)_n}{(q;q)_n} {}_1\phi_1(q^{-n};q^{\alpha+1};q,-q^{n+\alpha+1}x) Q-Laguerre polynomials Yes No ☒N - - - ☒N -
Full data:
91 \sum_{n=0}^\infty H_n(x \mid q) \frac{t^n}{(q;q)_n} = \frac{1}{\left( t e^{i \theta},t e^{-i \theta};q \right)_\infty} Continuous q-Hermite polynomials No - - ☒N - - - Mistakenly detect Hermite polynomial but was continuous q-Hermite polynomial.
Full data:
92 w^{\prime\prime}+\xi\sin(2z)w^{\prime}+(\eta-p\xi\cos(2z))w=0. Ince equation Yes No - - ☒N ☒N - ODE.
Full data:
93 Q_v^\mu(x)= \cos(\mu\pi)\left(\frac{1+x}{1-x}\right)^{\mu/2}\frac{F(v+1,-v;1-\mu;1/2-2/x)} {\Gamma(1-\mu ) } Ferrers function No No - ☒N - ☒N - No information about gamma fuction and hypergeometric function.
Full data:
94 H_{-v}^{(1)}(z,w)=e^{v\pi i}H_v^{(1)}(z,w) Incomplete Bessel functions Yes - - - - - - -
Full data:
95 K_v(x,y)=\int_1^\infty\frac{e^{-xt-\frac{y}{t}}}{t^{v+1}}dt Incomplete Bessel K function/generalized incomplete gamma function Yes No ☒N - - - - -
Full data: