Poject:GoldData: Difference between revisions

From LaTeX CAS translator demo
Jump to navigation Jump to search
Redirected page to wmf:Privacy policy
Redirected page to wmf:Privacy policy
Line 5: Line 5:
! colspan="3" | Entry Info
! colspan="3" | Entry Info
! colspan="2" | Translations
! colspan="2" | Translations
! colspan="5" | Reason For Failure  
! colspan="5" | Reason For Failure
! colspan="2" |  
! colspan="2" |
|-
|-
! # !! Formula !! Title !! Semantic LaTeX !! CAS Translations !! Definition / Substitution !! Pattern Matching !! Derivatives / Primes !! Missing Infos !! Untranslatable Macro !! Explanation !! Evaluation Data
! # !! Formula !! Title !! Semantic LaTeX !! CAS Translations !! Definition / Substitution !! Pattern Matching !! Derivatives / Primes !! Missing Infos !! Untranslatable Macro !! Explanation !! Evaluation Data


|-  
|-
| 1  
| [[Gold 1]]
| <syntaxhighlight lang="tex"  inline >\begin{align}J_{-(m+\frac{1}{2})}(x) &= (-1)^{m+1} Y_{m+\frac{1}{2}}(x), \\Y_{-(m+\frac{1}{2})}(x) &= (-1)^m J_{m+\frac{1}{2}}(x).\end{align}</syntaxhighlight>
| <syntaxhighlight lang="tex"  inline >\begin{align}J_{-(m+\frac{1}{2})}(x) &= (-1)^{m+1} Y_{m+\frac{1}{2}}(x), \\Y_{-(m+\frac{1}{2})}(x) &= (-1)^m J_{m+\frac{1}{2}}(x).\end{align}</syntaxhighlight>
| [[Bessel function#math.51.18| Bessel function]]  
| [[Bessel function#math.51.18| Bessel function]]
| {{ya}}
| {{ya}}
| {{ya}}
| {{ya}}
Line 261: Line 261:
}</syntaxhighlight>
}</syntaxhighlight>
</div></div>
</div></div>
|-  
|-
| 2  
| [[Gold 2]]
| <syntaxhighlight lang="tex"  inline >E(e) \,=\, \int_0^{\pi/2}\sqrt {1 - e^2 \sin^2\theta}\ d\theta</syntaxhighlight>
| <syntaxhighlight lang="tex"  inline >E(e) \,=\, \int_0^{\pi/2}\sqrt {1 - e^2 \sin^2\theta}\ d\theta</syntaxhighlight>
| [[Ellipse#math.52.404| Ellipse]]  
| [[Ellipse#math.52.404| Ellipse]]
| {{na}}
| {{na}}
| {{na}}
| {{na}}
Line 388: Line 388:
}</syntaxhighlight>
}</syntaxhighlight>
</div></div>
</div></div>
|-  
|-
| 3  
| [[Gold 3]]
| <syntaxhighlight lang="tex"  inline >F(x;k) = u</syntaxhighlight>
| <syntaxhighlight lang="tex"  inline >F(x;k) = u</syntaxhighlight>


| [[Elliptic integral#math.53.6| Elliptic integral]]  
| [[Elliptic integral#math.53.6| Elliptic integral]]
| {{na}}
| {{na}}
| {{na}}
| {{na}}
Line 495: Line 495:
}</syntaxhighlight>
}</syntaxhighlight>
</div></div>
</div></div>
|-  
|-
| 4  
| [[Gold 4]]
| <syntaxhighlight lang="tex"  inline >\frac{1}{\Gamma(z)} = \frac{i}{2\pi}\int_C (-t)^{-z}e^{-t}\,dt</syntaxhighlight>
| <syntaxhighlight lang="tex"  inline >\frac{1}{\Gamma(z)} = \frac{i}{2\pi}\int_C (-t)^{-z}e^{-t}\,dt</syntaxhighlight>


| [[Gamma function#math.54.195| Gamma function]]  
| [[Gamma function#math.54.195| Gamma function]]
| {{ya}}
| {{ya}}
| -
| -
Line 585: Line 585:
}</syntaxhighlight>
}</syntaxhighlight>
</div></div>
</div></div>
|-  
|-
| 5  
| [[Gold 5]]
| <syntaxhighlight lang="tex"  inline >2^{4} = 2 \times2 \times 2 \times 2 = 16</syntaxhighlight>
| <syntaxhighlight lang="tex"  inline >2^{4} = 2 \times2 \times 2 \times 2 = 16</syntaxhighlight>


| [[Logarithm#| Logarithm]]  
| [[Logarithm#| Logarithm]]
| {{ya}}
| {{ya}}
| {{ya}}
| {{ya}}
Line 661: Line 661:
}</syntaxhighlight>
}</syntaxhighlight>
</div></div>
</div></div>
|-  
|-
| 6  
| [[Gold 6]]
| <syntaxhighlight lang="tex"  inline >\psi(x) := \sum_{n=1}^\infty e^{-n^2 \pi x}</syntaxhighlight>
| <syntaxhighlight lang="tex"  inline >\psi(x) := \sum_{n=1}^\infty e^{-n^2 \pi x}</syntaxhighlight>


| [[Riemann zeta function#math.56.40| Riemann zeta function]]  
| [[Riemann zeta function#math.56.40| Riemann zeta function]]
| {{ya}}
| {{ya}}
| {{ya}}
| {{ya}}
Line 746: Line 746:
}</syntaxhighlight>
}</syntaxhighlight>
</div></div>
</div></div>
|-  
|-
| 7  
| [[Gold 7]]
| <syntaxhighlight lang="tex"  inline >\operatorname{li}(x) = \lim_{\varepsilon \to 0+} \left( \int_0^{1-\varepsilon} \frac{dt}{\ln t} + \int_{1+\varepsilon}^x \frac{dt}{\ln t} \right)</syntaxhighlight>
| <syntaxhighlight lang="tex"  inline >\operatorname{li}(x) = \lim_{\varepsilon \to 0+} \left( \int_0^{1-\varepsilon} \frac{dt}{\ln t} + \int_{1+\varepsilon}^x \frac{dt}{\ln t} \right)</syntaxhighlight>


| [[Logarithmic integral function#math.57.2| Logarithmic integral function]]  
| [[Logarithmic integral function#math.57.2| Logarithmic integral function]]
| {{ya}}
| {{ya}}
| {{ya}}
| {{ya}}
Line 858: Line 858:
}</syntaxhighlight>
}</syntaxhighlight>
</div></div>
</div></div>
|-  
|-
| 8  
| [[Gold 8]]
| <syntaxhighlight lang="tex"  inline >w_{i} = \frac{1}{p'_{n}(x_{i})}\int_{a}^{b}\omega(x)\frac{p_{n}(x)}{x-x_{i}}dx</syntaxhighlight>
| <syntaxhighlight lang="tex"  inline >w_{i} = \frac{1}{p'_{n}(x_{i})}\int_{a}^{b}\omega(x)\frac{p_{n}(x)}{x-x_{i}}dx</syntaxhighlight>


| [[Gaussian quadrature#math.58.61| Gaussian quadrature]]  
| [[Gaussian quadrature#math.58.61| Gaussian quadrature]]
| {{ya}}
| {{ya}}
| {{na}}
| {{na}}
Line 955: Line 955:
}</syntaxhighlight>
}</syntaxhighlight>
</div></div>
</div></div>
|-  
|-
| 9  
| [[Gold 9]]
| <syntaxhighlight lang="tex"  inline >\begin{align}x & =ue^u, \\[5pt]\frac{dx}{du} & =(u+1)e^u.\end{align}</syntaxhighlight>
| <syntaxhighlight lang="tex"  inline >\begin{align}x & =ue^u, \\[5pt]\frac{dx}{du} & =(u+1)e^u.\end{align}</syntaxhighlight>


| [[Lambert W function#math.59.52| Lambert W function]]  
| [[Lambert W function#math.59.52| Lambert W function]]
| {{na}}
| {{na}}
| {{na}}
| {{na}}
Line 1,045: Line 1,045:
}</syntaxhighlight>
}</syntaxhighlight>
</div></div>
</div></div>
|-  
|-
| 10  
| [[Gold 10]]
| <syntaxhighlight lang="tex"  inline >\frac{1}{\left| \mathbf{x}-\mathbf{x}' \right|} = \frac{1}{\sqrt{r^2+{r'}^2-2r{r'}\cos\gamma}} = \sum_{\ell=0}^\infty \frac{{r'}^\ell}{r^{\ell+1}} P_\ell(\cos \gamma)</syntaxhighlight>
| <syntaxhighlight lang="tex"  inline >\frac{1}{\left| \mathbf{x}-\mathbf{x}' \right|} = \frac{1}{\sqrt{r^2+{r'}^2-2r{r'}\cos\gamma}} = \sum_{\ell=0}^\infty \frac{{r'}^\ell}{r^{\ell+1}} P_\ell(\cos \gamma)</syntaxhighlight>


| [[Legendre polynomials#math.60.57| Legendre polynomials]]  
| [[Legendre polynomials#math.60.57| Legendre polynomials]]
| {{ya}}
| {{ya}}
| {{na}}
| {{na}}
Line 1,127: Line 1,127:
}</syntaxhighlight>
}</syntaxhighlight>
</div></div>
</div></div>
|-  
|-
| 11  
| [[Gold 11]]
| <syntaxhighlight lang="tex"  inline >\operatorname{erf}^{(k)}(z) = \frac{2 (-1)^{k-1}}{\sqrt{\pi}} \mathit{H}_{k-1}(z) e^{-z^2} = \frac{2}{\sqrt{\pi}}  \frac{d^{k-1}}{dz^{k-1}} \left(e^{-z^2}\right),\qquad k=1, 2, \dots</syntaxhighlight>
| <syntaxhighlight lang="tex"  inline >\operatorname{erf}^{(k)}(z) = \frac{2 (-1)^{k-1}}{\sqrt{\pi}} \mathit{H}_{k-1}(z) e^{-z^2} = \frac{2}{\sqrt{\pi}}  \frac{d^{k-1}}{dz^{k-1}} \left(e^{-z^2}\right),\qquad k=1, 2, \dots</syntaxhighlight>


| [[Error function#math.61.27| Error function]]  
| [[Error function#math.61.27| Error function]]
| {{ya}}
| {{ya}}
| {{na}}
| {{na}}
Line 1,247: Line 1,247:
}</syntaxhighlight>
}</syntaxhighlight>
</div></div>
</div></div>
|-  
|-
| 12  
| [[Gold 12]]
| <syntaxhighlight lang="tex"  inline >x_k = \cos\left(\frac{\pi(k+1/2)}{n}\right),\quad k=0,\ldots,n-1</syntaxhighlight>
| <syntaxhighlight lang="tex"  inline >x_k = \cos\left(\frac{\pi(k+1/2)}{n}\right),\quad k=0,\ldots,n-1</syntaxhighlight>


| [[Chebyshev polynomials#math.62.44| Chebyshev polynomials]]  
| [[Chebyshev polynomials#math.62.44| Chebyshev polynomials]]
| {{ya}}
| {{ya}}
| {{ya}}
| {{ya}}
Line 1,363: Line 1,363:
}</syntaxhighlight>
}</syntaxhighlight>
</div></div>
</div></div>
|-  
|-
| 13  
| [[Gold 13]]
| <syntaxhighlight lang="tex"  inline >E(x, y; u) := \sum_{n=0}^\infty u^n \, \psi_n (x) \, \psi_n (y) = \frac{1}{\sqrt{\pi (1 - u^2)}} \, \exp\left(-\frac{1 - u}{1 + u} \, \frac{(x + y)^2}{4} - \frac{1 + u}{1 - u} \, \frac{(x - y)^2}{4}\right)</syntaxhighlight>
| <syntaxhighlight lang="tex"  inline >E(x, y; u) := \sum_{n=0}^\infty u^n \, \psi_n (x) \, \psi_n (y) = \frac{1}{\sqrt{\pi (1 - u^2)}} \, \exp\left(-\frac{1 - u}{1 + u} \, \frac{(x + y)^2}{4} - \frac{1 + u}{1 - u} \, \frac{(x - y)^2}{4}\right)</syntaxhighlight>


| [[Hermite polynomials#math.63.109| Hermite polynomials]]  
| [[Hermite polynomials#math.63.109| Hermite polynomials]]
| {{ya}}
| {{ya}}
| {{ya}}
| {{ya}}
Line 1,460: Line 1,460:
}</syntaxhighlight>
}</syntaxhighlight>
</div></div>
</div></div>
|-  
|-
| 14  
| [[Gold 14]]
| <syntaxhighlight lang="tex"  inline >x = \pm 1</syntaxhighlight>
| <syntaxhighlight lang="tex"  inline >x = \pm 1</syntaxhighlight>


| [[Legendre function#math.64.8| Legendre function]]  
| [[Legendre function#math.64.8| Legendre function]]
| {{ya}}
| {{ya}}
| {{ya}}
| {{ya}}
Line 1,537: Line 1,537:
}</syntaxhighlight>
}</syntaxhighlight>
</div></div>
</div></div>
|-  
|-
| 15  
| [[Gold 15]]
| <syntaxhighlight lang="tex"  inline >E_n=2^nE_n(\tfrac{1}{2})</syntaxhighlight>
| <syntaxhighlight lang="tex"  inline >E_n=2^nE_n(\tfrac{1}{2})</syntaxhighlight>


| [[Bernoulli polynomials#math.65.27| Bernoulli polynomials]]  
| [[Bernoulli polynomials#math.65.27| Bernoulli polynomials]]
| {{na}}
| {{na}}
| {{na}}
| {{na}}
Line 1,592: Line 1,592:
}</syntaxhighlight>
}</syntaxhighlight>
</div></div>
</div></div>
|-  
|-
| 16  
| [[Gold 16]]
| <syntaxhighlight lang="tex"  inline >\operatorname{Si}(ix) = i\operatorname{Shi}(x)</syntaxhighlight>
| <syntaxhighlight lang="tex"  inline >\operatorname{Si}(ix) = i\operatorname{Shi}(x)</syntaxhighlight>


| [[Trigonometric integral#math.66.8| Trigonometric integral]]  
| [[Trigonometric integral#math.66.8| Trigonometric integral]]
| {{na}}
| {{na}}
| {{na}}
| {{na}}
Line 1,683: Line 1,683:
}</syntaxhighlight>
}</syntaxhighlight>
</div></div>
</div></div>
|-  
|-
| 17  
| [[Gold 17]]
| <syntaxhighlight lang="tex"  inline >f(z)=\frac{1}{\Beta(x,y)}</syntaxhighlight>
| <syntaxhighlight lang="tex"  inline >f(z)=\frac{1}{\Beta(x,y)}</syntaxhighlight>


| [[Beta function#math.67.29| Beta function]]  
| [[Beta function#math.67.29| Beta function]]
| {{na}}
| {{na}}
| {{na}}
| {{na}}
Line 1,767: Line 1,767:
}</syntaxhighlight>
}</syntaxhighlight>
</div></div>
</div></div>
|-  
|-
| 18  
| [[Gold 18]]
| <syntaxhighlight lang="tex"  inline >\begin{align}\int x^m e^{ix^n}\,dx & =\frac{x^{m+1}}{m+1}\,_1F_1\left(\begin{array}{c} \frac{m+1}{n}\\1+\frac{m+1}{n}\end{array}\mid ix^n\right) \\[6px]& =\frac{1}{n} i^\frac{m+1}{n}\gamma\left(\frac{m+1}{n},-ix^n\right),\end{align}</syntaxhighlight>
| <syntaxhighlight lang="tex"  inline >\begin{align}\int x^m e^{ix^n}\,dx & =\frac{x^{m+1}}{m+1}\,_1F_1\left(\begin{array}{c} \frac{m+1}{n}\\1+\frac{m+1}{n}\end{array}\mid ix^n\right) \\[6px]& =\frac{1}{n} i^\frac{m+1}{n}\gamma\left(\frac{m+1}{n},-ix^n\right),\end{align}</syntaxhighlight>


| [[Fresnel integral#math.68.51| Fresnel integral]]  
| [[Fresnel integral#math.68.51| Fresnel integral]]
| {{na}}
| {{na}}
| {{na}}
| {{na}}
Line 1,833: Line 1,833:
}</syntaxhighlight>
}</syntaxhighlight>
</div></div>
</div></div>
|-  
|-
| 19  
| [[Gold 19]]
| <syntaxhighlight lang="tex"  inline >T_n(x) = \frac{\Gamma(1/2)\sqrt{1-x^2}}{(-2)^n\,\Gamma(n+1/2)} \  \frac{d^n}{dx^n}\left([1-x^2]^{n-1/2}\right)</syntaxhighlight>
| <syntaxhighlight lang="tex"  inline >T_n(x) = \frac{\Gamma(1/2)\sqrt{1-x^2}}{(-2)^n\,\Gamma(n+1/2)} \  \frac{d^n}{dx^n}\left([1-x^2]^{n-1/2}\right)</syntaxhighlight>


| [[Classical orthogonal polynomials#math.69.117| Classical orthogonal polynomials]]  
| [[Classical orthogonal polynomials#math.69.117| Classical orthogonal polynomials]]
| {{na}}
| {{na}}
| {{na}}
| {{na}}
Line 1,918: Line 1,918:
}</syntaxhighlight>
}</syntaxhighlight>
</div></div>
</div></div>
|-  
|-
| 20  
| [[Gold 20]]
| <syntaxhighlight lang="tex"  inline >{}_1F_0(1;;z) = \sum_{n \geqslant 0} z^n = (1-z)^{-1}</syntaxhighlight>
| <syntaxhighlight lang="tex"  inline >{}_1F_0(1;;z) = \sum_{n \geqslant 0} z^n = (1-z)^{-1}</syntaxhighlight>


| [[Generalized hypergeometric function#math.70.58| Generalized hypergeometric function]]  
| [[Generalized hypergeometric function#math.70.58| Generalized hypergeometric function]]
| {{na}}
| {{na}}
| {{na}}
| {{na}}
Line 1,983: Line 1,983:
}</syntaxhighlight>
}</syntaxhighlight>
</div></div>
</div></div>
|-  
|-
| 21  
| [[Gold 21]]
| <syntaxhighlight lang="tex"  inline >\chi(-1) = 1</syntaxhighlight>
| <syntaxhighlight lang="tex"  inline >\chi(-1) = 1</syntaxhighlight>


| [[Dirichlet L-function#math.71.1| Dirichlet L-function]]  
| [[Dirichlet L-function#math.71.1| Dirichlet L-function]]
| {{ya}}
| {{ya}}
| {{na}}
| {{na}}
Line 2,063: Line 2,063:
}</syntaxhighlight>
}</syntaxhighlight>
</div></div>
</div></div>
|-  
|-
| 22  
| [[Gold 22]]
| <syntaxhighlight lang="tex"  inline >\operatorname{Bi}'(z)\sim \frac{z^{\frac{1}{4}}e^{\frac{2}{3}z^{\frac{3}{2}}}}{\sqrt\pi\,}\left[ \sum_{n=0}^{\infty}\frac{1+6n}{1-6n} \dfrac{ \Gamma(n+\frac{5}{6})\Gamma(n+\frac{1}{6})\left(\frac{3}{4}\right)^n}{2\pi n! z^{3n/2}} \right]</syntaxhighlight>
| <syntaxhighlight lang="tex"  inline >\operatorname{Bi}'(z)\sim \frac{z^{\frac{1}{4}}e^{\frac{2}{3}z^{\frac{3}{2}}}}{\sqrt\pi\,}\left[ \sum_{n=0}^{\infty}\frac{1+6n}{1-6n} \dfrac{ \Gamma(n+\frac{5}{6})\Gamma(n+\frac{1}{6})\left(\frac{3}{4}\right)^n}{2\pi n! z^{3n/2}} \right]</syntaxhighlight>


| [[Airy function#math.72.15| Airy function]]  
| [[Airy function#math.72.15| Airy function]]
| {{na}}
| {{na}}
| -
| -
Line 2,143: Line 2,143:
}</syntaxhighlight>
}</syntaxhighlight>
</div></div>
</div></div>
|-  
|-
| 23  
| [[Gold 23]]
| <syntaxhighlight lang="tex"  inline >F'(y)=1-2yF(y)</syntaxhighlight>
| <syntaxhighlight lang="tex"  inline >F'(y)=1-2yF(y)</syntaxhighlight>


| [[Dawson function#math.73.41| Dawson function]]  
| [[Dawson function#math.73.41| Dawson function]]
| {{na}}
| {{na}}
| {{na}}
| {{na}}
Line 2,200: Line 2,200:
}</syntaxhighlight>
}</syntaxhighlight>
</div></div>
</div></div>
|-  
|-
| 24  
| [[Gold 24]]
| <syntaxhighlight lang="tex"  inline >s\not =1</syntaxhighlight>
| <syntaxhighlight lang="tex"  inline >s\not =1</syntaxhighlight>


| [[Hurwitz zeta function#math.74.0| Hurwitz zeta function]]  
| [[Hurwitz zeta function#math.74.0| Hurwitz zeta function]]
| {{ya}}
| {{ya}}
| {{ya}}
| {{ya}}
Line 2,252: Line 2,252:
}</syntaxhighlight>
}</syntaxhighlight>
</div></div>
</div></div>
|-  
|-
| 25  
| [[Gold 25]]
| <syntaxhighlight lang="tex"  inline >q = e^{i\pi\tau}</syntaxhighlight>
| <syntaxhighlight lang="tex"  inline >q = e^{i\pi\tau}</syntaxhighlight>


| [[Theta function#math.75.6| Theta function]]  
| [[Theta function#math.75.6| Theta function]]
| {{ya}}
| {{ya}}
| {{ya}}
| {{ya}}
Line 2,317: Line 2,317:
}</syntaxhighlight>
}</syntaxhighlight>
</div></div>
</div></div>
|-  
|-
| 26  
| [[Gold 26]]
| <syntaxhighlight lang="tex"  inline >\frac{\mathrm{d}}{\mathrm{d}z} \operatorname{dn}(z) = - k^2 \operatorname{sn}(z) \operatorname{cn}(z)</syntaxhighlight>
| <syntaxhighlight lang="tex"  inline >\frac{\mathrm{d}}{\mathrm{d}z} \operatorname{dn}(z) = - k^2 \operatorname{sn}(z) \operatorname{cn}(z)</syntaxhighlight>


| [[Jacobi elliptic functions#math.76.155| Jacobi elliptic functions]]  
| [[Jacobi elliptic functions#math.76.155| Jacobi elliptic functions]]
| {{ya}}
| {{ya}}
| {{ya}}
| {{ya}}
Line 2,391: Line 2,391:
}</syntaxhighlight>
}</syntaxhighlight>
</div></div>
</div></div>
|-  
|-
| 27  
| [[Gold 27]]
| <syntaxhighlight lang="tex"  inline >\int_{-\infty}^\infty \frac {\gamma\left(\frac s 2, z^2 \pi \right)} {(z^2 \pi)^\frac s 2} e^{-2 \pi i k z} \mathrm d z = \frac {\Gamma\left(\frac {1-s} 2, k^2 \pi \right)} {(k^2 \pi)^\frac {1-s} 2}</syntaxhighlight>
| <syntaxhighlight lang="tex"  inline >\int_{-\infty}^\infty \frac {\gamma\left(\frac s 2, z^2 \pi \right)} {(z^2 \pi)^\frac s 2} e^{-2 \pi i k z} \mathrm d z = \frac {\Gamma\left(\frac {1-s} 2, k^2 \pi \right)} {(k^2 \pi)^\frac {1-s} 2}</syntaxhighlight>


| [[Incomplete gamma function#math.77.118| Incomplete gamma function]]  
| [[Incomplete gamma function#math.77.118| Incomplete gamma function]]
| {{ya}}
| {{ya}}
| {{ya}}
| {{ya}}
Line 2,466: Line 2,466:
}</syntaxhighlight>
}</syntaxhighlight>
</div></div>
</div></div>
|-  
|-
| 28  
| [[Gold 28]]
| <syntaxhighlight lang="tex"  inline >_{1}(z) =</syntaxhighlight>
| <syntaxhighlight lang="tex"  inline >_{1}(z) =</syntaxhighlight>


| [[Polylogarithm#math.78.0| Polylogarithm]]  
| [[Polylogarithm#math.78.0| Polylogarithm]]
| {{na}}
| {{na}}
| {{na}}
| {{na}}
Line 2,542: Line 2,542:
}</syntaxhighlight>
}</syntaxhighlight>
</div></div>
</div></div>
|-  
|-
| 29  
| [[Gold 29]]
| <syntaxhighlight lang="tex"  inline >\int_{-\infty}^\infty \operatorname{sinc}(t) \, e^{-i 2 \pi f t}\,dt = \operatorname{rect}(f)</syntaxhighlight>
| <syntaxhighlight lang="tex"  inline >\int_{-\infty}^\infty \operatorname{sinc}(t) \, e^{-i 2 \pi f t}\,dt = \operatorname{rect}(f)</syntaxhighlight>


| [[Sinc function#math.79.11| Sinc function]]  
| [[Sinc function#math.79.11| Sinc function]]
| {{ya}}
| {{ya}}
| {{ya}}
| {{ya}}
Line 2,613: Line 2,613:
}</syntaxhighlight>
}</syntaxhighlight>
</div></div>
</div></div>
|-  
|-
| 30  
| [[Gold 30]]
| <syntaxhighlight lang="tex"  inline >N=1</syntaxhighlight>
| <syntaxhighlight lang="tex"  inline >N=1</syntaxhighlight>


| [[Exponential integral#math.80.26| Exponential integral]]  
| [[Exponential integral#math.80.26| Exponential integral]]
| {{ya}}
| {{ya}}
| {{ya}}
| {{ya}}
Line 2,670: Line 2,670:
}</syntaxhighlight>
}</syntaxhighlight>
</div></div>
</div></div>
|-  
|-
| 31  
| [[Gold 31]]
| <syntaxhighlight lang="tex"  inline >\sum_{n=0}^\infty \frac{n!\,\Gamma\left(\alpha + 1\right)}{\Gamma\left(n+\alpha+1\right)}L_n^{(\alpha)}(x)L_n^{(\alpha)}(y)t^n=\frac{1}{(1-t)^{\alpha + 1}}e^{-(x+y)t/(1-t)}\,_0F_1\left(;\alpha + 1;\frac{xyt}{(1-t)^2}\right)</syntaxhighlight>
| <syntaxhighlight lang="tex"  inline >\sum_{n=0}^\infty \frac{n!\,\Gamma\left(\alpha + 1\right)}{\Gamma\left(n+\alpha+1\right)}L_n^{(\alpha)}(x)L_n^{(\alpha)}(y)t^n=\frac{1}{(1-t)^{\alpha + 1}}e^{-(x+y)t/(1-t)}\,_0F_1\left(;\alpha + 1;\frac{xyt}{(1-t)^2}\right)</syntaxhighlight>


| [[Laguerre polynomials#math.81.84| Laguerre polynomials]]  
| [[Laguerre polynomials#math.81.84| Laguerre polynomials]]
| {{na}}
| {{na}}
| {{na}}
| {{na}}
Line 2,742: Line 2,742:
}</syntaxhighlight>
}</syntaxhighlight>
</div></div>
</div></div>
|-  
|-
| 32  
| [[Gold 32]]
| <syntaxhighlight lang="tex"  inline >c_{lm} = (-1)^m \frac{(\ell-m)!}{(\ell+m)!}</syntaxhighlight>
| <syntaxhighlight lang="tex"  inline >c_{lm} = (-1)^m \frac{(\ell-m)!}{(\ell+m)!}</syntaxhighlight>


| [[Associated Legendre polynomials#math.82.8| Associated Legendre polynomials]]  
| [[Associated Legendre polynomials#math.82.8| Associated Legendre polynomials]]
| {{ya}}
| {{ya}}
| {{ya}}
| {{ya}}
Line 2,797: Line 2,797:
}</syntaxhighlight>
}</syntaxhighlight>
</div></div>
</div></div>
|-  
|-
| 33  
| [[Gold 33]]
| <syntaxhighlight lang="tex"  inline >\mathrm{Gi}(x) = \frac{1}{\pi} \int_0^\infty \sin\left(\frac{t^3}{3} + xt\right)\, dt</syntaxhighlight>
| <syntaxhighlight lang="tex"  inline >\mathrm{Gi}(x) = \frac{1}{\pi} \int_0^\infty \sin\left(\frac{t^3}{3} + xt\right)\, dt</syntaxhighlight>


| [[Scorer's function#math.83.3| Scorer's function]]  
| [[Scorer's function#math.83.3| Scorer's function]]
| {{ya}}
| {{ya}}
| {{ya}}
| {{ya}}
Line 2,883: Line 2,883:
}</syntaxhighlight>
}</syntaxhighlight>
</div></div>
</div></div>
|-  
|-
| 34  
| [[Gold 34]]
| <syntaxhighlight lang="tex"  inline >\frac{\partial^2}{\partial x^2} V(x;\sigma,\gamma)= \frac{x^2-\gamma^2-\sigma^2}{\sigma^4} \frac{\operatorname{Re}[w(z)]}{\sigma\sqrt{2 \pi}}-\frac{2 x \gamma}{\sigma^4} \frac{\operatorname{Im}[w(z)]}{\sigma\sqrt{2 \pi}}+\frac{\gamma}{\sigma^4}\frac{1}{\pi}</syntaxhighlight>
| <syntaxhighlight lang="tex"  inline >\frac{\partial^2}{\partial x^2} V(x;\sigma,\gamma)= \frac{x^2-\gamma^2-\sigma^2}{\sigma^4} \frac{\operatorname{Re}[w(z)]}{\sigma\sqrt{2 \pi}}-\frac{2 x \gamma}{\sigma^4} \frac{\operatorname{Im}[w(z)]}{\sigma\sqrt{2 \pi}}+\frac{\gamma}{\sigma^4}\frac{1}{\pi}</syntaxhighlight>


| [[Voigt profile#math.84.31| Voigt profile]]  
| [[Voigt profile#math.84.31| Voigt profile]]
| {{ya}}
| {{ya}}
| {{na}}
| {{na}}
Line 2,957: Line 2,957:
}</syntaxhighlight>
}</syntaxhighlight>
</div></div>
</div></div>
|-  
|-
| 35  
| [[Gold 35]]
| <syntaxhighlight lang="tex"  inline >\Phi(z,s,a) = \frac{1}{1-z} \frac{1}{a^{s}}    +    \sum_{n=1}^{N-1} \frac{(-1)^{n} \mathrm{Li}_{-n}(z)}{n!} \frac{(s)_{n}}{a^{n+s}}    +O(a^{-N-s})</syntaxhighlight>
| <syntaxhighlight lang="tex"  inline >\Phi(z,s,a) = \frac{1}{1-z} \frac{1}{a^{s}}    +    \sum_{n=1}^{N-1} \frac{(-1)^{n} \mathrm{Li}_{-n}(z)}{n!} \frac{(s)_{n}}{a^{n+s}}    +O(a^{-N-s})</syntaxhighlight>


| [[Lerch zeta function#math.85.57| Lerch zeta function]]  
| [[Lerch zeta function#math.85.57| Lerch zeta function]]
| {{na}}
| {{na}}
| {{na}}
| {{na}}
Line 3,030: Line 3,030:
}</syntaxhighlight>
}</syntaxhighlight>
</div></div>
</div></div>
|-  
|-
| 36  
| [[Gold 36]]
| <syntaxhighlight lang="tex"  inline >M(1,2,z)=(e^z-1)/z,\ \ M(1,3,z)=2!(e^z-1-z)/z^2</syntaxhighlight>
| <syntaxhighlight lang="tex"  inline >M(1,2,z)=(e^z-1)/z,\ \ M(1,3,z)=2!(e^z-1-z)/z^2</syntaxhighlight>


| [[Confluent hypergeometric function#math.86.44| Confluent hypergeometric function]]  
| [[Confluent hypergeometric function#math.86.44| Confluent hypergeometric function]]
| {{ya}}
| {{ya}}
| {{ya}}
| {{ya}}
Line 3,101: Line 3,101:
}</syntaxhighlight>
}</syntaxhighlight>
</div></div>
</div></div>
|-  
|-
| 37  
| [[Gold 37]]
| <syntaxhighlight lang="tex"  inline >\sigma = \pm 1</syntaxhighlight>
| <syntaxhighlight lang="tex"  inline >\sigma = \pm 1</syntaxhighlight>


| [[Mathieu function#math.87.54| Mathieu function]]  
| [[Mathieu function#math.87.54| Mathieu function]]
| {{ya}}
| {{ya}}
| {{ya}}
| {{ya}}
Line 3,178: Line 3,178:
}</syntaxhighlight>
}</syntaxhighlight>
</div></div>
</div></div>
|-  
|-
| 38  
| [[Gold 38]]
| <syntaxhighlight lang="tex"  inline >\frac{d^2f}{dz^2} + \left(\tilde{a}z^2+\tilde{b}z+\tilde{c}\right)f=0</syntaxhighlight>
| <syntaxhighlight lang="tex"  inline >\frac{d^2f}{dz^2} + \left(\tilde{a}z^2+\tilde{b}z+\tilde{c}\right)f=0</syntaxhighlight>


| [[Parabolic cylinder function#math.88.0| Parabolic cylinder function]]  
| [[Parabolic cylinder function#math.88.0| Parabolic cylinder function]]
| {{ya}}
| {{ya}}
| {{na}}
| {{na}}
Line 3,240: Line 3,240:
}</syntaxhighlight>
}</syntaxhighlight>
</div></div>
</div></div>
|-  
|-
| 39  
| [[Gold 39]]
| <syntaxhighlight lang="tex"  inline >c=\infty</syntaxhighlight>
| <syntaxhighlight lang="tex"  inline >c=\infty</syntaxhighlight>


| [[Painlevé transcendents#math.89.23| Painlevé transcendents]]  
| [[Painlevé transcendents#math.89.23| Painlevé transcendents]]
| {{ya}}
| {{ya}}
| {{ya}}
| {{ya}}
Line 3,305: Line 3,305:
}</syntaxhighlight>
}</syntaxhighlight>
</div></div>
</div></div>
|-  
|-
| 40  
| [[Gold 40]]
| <syntaxhighlight lang="tex"  inline >c = a + 1</syntaxhighlight>
| <syntaxhighlight lang="tex"  inline >c = a + 1</syntaxhighlight>


| [[Hypergeometric function#math.90.7| Hypergeometric function]]  
| [[Hypergeometric function#math.90.7| Hypergeometric function]]
| {{ya}}
| {{ya}}
| {{ya}}
| {{ya}}
Line 3,359: Line 3,359:
}</syntaxhighlight>
}</syntaxhighlight>
</div></div>
</div></div>
|-  
|-
| 41  
| [[Gold 41]]
| <syntaxhighlight lang="tex"  inline >\frac{1}{\Gamma(z)}= z e^{\gamma z} \prod_{k=1}^\infty \left\{ \left(1+\frac{z}{k}\right)e^{-z/k} \right\}</syntaxhighlight>
| <syntaxhighlight lang="tex"  inline >\frac{1}{\Gamma(z)}= z e^{\gamma z} \prod_{k=1}^\infty \left\{ \left(1+\frac{z}{k}\right)e^{-z/k} \right\}</syntaxhighlight>


| [[Barnes G-function#math.91.47| Barnes G-function]]  
| [[Barnes G-function#math.91.47| Barnes G-function]]
| {{ya}}
| {{ya}}
| {{ya}}
| {{ya}}
Line 3,451: Line 3,451:
}</syntaxhighlight>
}</syntaxhighlight>
</div></div>
</div></div>
|-  
|-
| 42  
| [[Gold 42]]
| <syntaxhighlight lang="tex"  inline >192/24 = 8 = 2 \times 4</syntaxhighlight>
| <syntaxhighlight lang="tex"  inline >192/24 = 8 = 2 \times 4</syntaxhighlight>


| [[Heun function#math.92.1| Heun function]]  
| [[Heun function#math.92.1| Heun function]]
| {{ya}}
| {{ya}}
| {{ya}}
| {{ya}}
Line 3,691: Line 3,691:
}</syntaxhighlight>
}</syntaxhighlight>
</div></div>
</div></div>
|-  
|-
| 43  
| [[Gold 43]]
| <syntaxhighlight lang="tex"  inline >=2</syntaxhighlight>
| <syntaxhighlight lang="tex"  inline >=2</syntaxhighlight>


| [[Gegenbauer polynomials#math.93.0| Gegenbauer polynomials]]  
| [[Gegenbauer polynomials#math.93.0| Gegenbauer polynomials]]
| {{na}}
| {{na}}
| {{na}}
| {{na}}
Line 3,744: Line 3,744:
}</syntaxhighlight>
}</syntaxhighlight>
</div></div>
</div></div>
|-  
|-
| 44  
| [[Gold 44]]
| <syntaxhighlight lang="tex"  inline >\lim_{q\to 1}\;_{j}\phi_k \left[\begin{matrix} q^{a_1} & q^{a_2} & \ldots & q^{a_j} \\ q^{b_1} & q^{b_2} & \ldots & q^{b_k} \end{matrix} ; q,(q-1)^{1+k-j} z \right]=\;_{j}F_k \left[\begin{matrix} a_1 & a_2 & \ldots & a_j \\ b_1 & b_2 & \ldots & b_k \end{matrix} ;z \right]</syntaxhighlight>
| <syntaxhighlight lang="tex"  inline >\lim_{q\to 1}\;_{j}\phi_k \left[\begin{matrix} q^{a_1} & q^{a_2} & \ldots & q^{a_j} \\ q^{b_1} & q^{b_2} & \ldots & q^{b_k} \end{matrix} ; q,(q-1)^{1+k-j} z \right]=\;_{j}F_k \left[\begin{matrix} a_1 & a_2 & \ldots & a_j \\ b_1 & b_2 & \ldots & b_k \end{matrix} ;z \right]</syntaxhighlight>


| [[Basic hypergeometric series#math.94.4| Basic hypergeometric series]]  
| [[Basic hypergeometric series#math.94.4| Basic hypergeometric series]]
| {{na}}
| {{na}}
| -
| -
Line 3,802: Line 3,802:
}</syntaxhighlight>
}</syntaxhighlight>
</div></div>
</div></div>
|-  
|-
| 45  
| [[Gold 45]]
| <syntaxhighlight lang="tex"  inline >\frac{d^2w}{dz^2}+\left(-\frac{1}{4}+\frac{\kappa}{z}+\frac{1/4-\mu^2}{z^2}\right)w=0</syntaxhighlight>
| <syntaxhighlight lang="tex"  inline >\frac{d^2w}{dz^2}+\left(-\frac{1}{4}+\frac{\kappa}{z}+\frac{1/4-\mu^2}{z^2}\right)w=0</syntaxhighlight>


| [[Whittaker function#math.95.0| Whittaker function]]  
| [[Whittaker function#math.95.0| Whittaker function]]
| {{ya}}
| {{ya}}
| {{ya}}
| {{ya}}
Line 3,861: Line 3,861:
}</syntaxhighlight>
}</syntaxhighlight>
</div></div>
</div></div>
|-  
|-
| 46  
| [[Gold 46]]
| <syntaxhighlight lang="tex"  inline >e_1=\tfrac12,\qquad e_2=0,\qquad e_3=-\tfrac12</syntaxhighlight>
| <syntaxhighlight lang="tex"  inline >e_1=\tfrac12,\qquad e_2=0,\qquad e_3=-\tfrac12</syntaxhighlight>


| [[Lemniscatic elliptic function#math.96.1| Lemniscatic elliptic function]]  
| [[Lemniscatic elliptic function#math.96.1| Lemniscatic elliptic function]]
| {{ya}}
| {{ya}}
| {{na}}
| {{na}}
Line 3,916: Line 3,916:
}</syntaxhighlight>
}</syntaxhighlight>
</div></div>
</div></div>
|-  
|-
| 47  
| [[Gold 47]]
| <syntaxhighlight lang="tex"  inline >\gamma> 0,n-p=m-q> 0</syntaxhighlight>
| <syntaxhighlight lang="tex"  inline >\gamma> 0,n-p=m-q> 0</syntaxhighlight>


| [[Meijer G-function#math.98.53| Meijer G-function]]  
| [[Meijer G-function#math.98.53| Meijer G-function]]
| {{ya}}
| {{ya}}
| {{ya}}
| {{ya}}
Line 3,974: Line 3,974:
}</syntaxhighlight>
}</syntaxhighlight>
</div></div>
</div></div>
|-  
|-
| 48  
| [[Gold 48]]
| <syntaxhighlight lang="tex"  inline >\begin{pmatrix}  j \\  m \quad m'\end{pmatrix}:= \sqrt{2 j + 1}\begin{pmatrix}  j & 0 & j \\  m & 0 & m'\end{pmatrix}= (-1)^{j - m'} \delta_{m, -m'}</syntaxhighlight>
| <syntaxhighlight lang="tex"  inline >\begin{pmatrix}  j \\  m \quad m'\end{pmatrix}:= \sqrt{2 j + 1}\begin{pmatrix}  j & 0 & j \\  m & 0 & m'\end{pmatrix}= (-1)^{j - m'} \delta_{m, -m'}</syntaxhighlight>


| [[3-j symbol#math.99.30| 3-j symbol]]  
| [[3-j symbol#math.99.30| 3-j symbol]]
| {{ya}}
| {{ya}}
| {{na}}
| {{na}}
Line 4,033: Line 4,033:
}</syntaxhighlight>
}</syntaxhighlight>
</div></div>
</div></div>
|-  
|-
| 49  
| [[Gold 49]]
| <syntaxhighlight lang="tex"  inline >\begin{Bmatrix}    i & j & \ell\\    k & m & n  \end{Bmatrix}= (\Phi_{i,j}^{k,m})_{\ell,n}</syntaxhighlight>
| <syntaxhighlight lang="tex"  inline >\begin{Bmatrix}    i & j & \ell\\    k & m & n  \end{Bmatrix}= (\Phi_{i,j}^{k,m})_{\ell,n}</syntaxhighlight>


| [[6-j symbol#math.100.14| 6-j symbol]]  
| [[6-j symbol#math.100.14| 6-j symbol]]
| {{na}}
| {{na}}
| -
| -
Line 4,099: Line 4,099:
}</syntaxhighlight>
}</syntaxhighlight>
</div></div>
</div></div>
|-  
|-
| 50  
| [[Gold 50]]
| <syntaxhighlight lang="tex"  inline >\sum_{j_7 j_8} (2j_7+1)(2j_8+1)  \begin{Bmatrix}    j_1 & j_2 & j_3\\    j_4 & j_5 & j_6\\    j_7 & j_8 & j_9  \end{Bmatrix} \begin{Bmatrix}    j_1 & j_2 & j_3'\\    j_4 & j_5 & j_6'\\    j_7 & j_8 & j_9  \end{Bmatrix}  = \frac{\delta_{j_3j_3'}\delta_{j_6j_6'} \begin{Bmatrix} j_1 & j_2 & j_3 \end{Bmatrix} \begin{Bmatrix} j_4 & j_5 & j_6\end{Bmatrix} \begin{Bmatrix} j_3 & j_6 & j_9 \end{Bmatrix}}        {(2j_3+1)(2j_6+1)}</syntaxhighlight>
| <syntaxhighlight lang="tex"  inline >\sum_{j_7 j_8} (2j_7+1)(2j_8+1)  \begin{Bmatrix}    j_1 & j_2 & j_3\\    j_4 & j_5 & j_6\\    j_7 & j_8 & j_9  \end{Bmatrix} \begin{Bmatrix}    j_1 & j_2 & j_3'\\    j_4 & j_5 & j_6'\\    j_7 & j_8 & j_9  \end{Bmatrix}  = \frac{\delta_{j_3j_3'}\delta_{j_6j_6'} \begin{Bmatrix} j_1 & j_2 & j_3 \end{Bmatrix} \begin{Bmatrix} j_4 & j_5 & j_6\end{Bmatrix} \begin{Bmatrix} j_3 & j_6 & j_9 \end{Bmatrix}}        {(2j_3+1)(2j_6+1)}</syntaxhighlight>


| [[9-j symbol#math.101.32| 9-j symbol]]  
| [[9-j symbol#math.101.32| 9-j symbol]]
| {{na}}
| {{na}}
| -
| -
Line 4,158: Line 4,158:
}</syntaxhighlight>
}</syntaxhighlight>
</div></div>
</div></div>
|-  
|-
| 51  
| [[Gold 51]]
| <syntaxhighlight lang="tex"  inline >\mathcal{K}_k(x; n,q) = \sum_{j=0}^{k}(-q)^j (q-1)^{k-j} \binom {n-j}{k-j} \binom{x}{j}</syntaxhighlight>
| <syntaxhighlight lang="tex"  inline >\mathcal{K}_k(x; n,q) = \sum_{j=0}^{k}(-q)^j (q-1)^{k-j} \binom {n-j}{k-j} \binom{x}{j}</syntaxhighlight>


| [[Kravchuk polynomials#math.102.5| Kravchuk polynomials]]  
| [[Kravchuk polynomials#math.102.5| Kravchuk polynomials]]
| {{na}}
| {{na}}
| {{na}}
| {{na}}
Line 4,213: Line 4,213:
}</syntaxhighlight>
}</syntaxhighlight>
</div></div>
</div></div>
|-  
|-
| 52  
| [[Gold 52]]
| <syntaxhighlight lang="tex"  inline >g_1(x) = \sum_{k \geq 1} \frac{\sin(k \pi / 4)}{k! (8x)^k} \prod_{l = 1}^k (2l - 1)^2</syntaxhighlight>
| <syntaxhighlight lang="tex"  inline >g_1(x) = \sum_{k \geq 1} \frac{\sin(k \pi / 4)}{k! (8x)^k} \prod_{l = 1}^k (2l - 1)^2</syntaxhighlight>


| [[Kelvin functions#math.103.8| Kelvin functions]]  
| [[Kelvin functions#math.103.8| Kelvin functions]]
| {{ya}}
| {{ya}}
| {{na}}
| {{na}}
Line 4,280: Line 4,280:
}</syntaxhighlight>
}</syntaxhighlight>
</div></div>
</div></div>
|-  
|-
| 53  
| [[Gold 53]]
| <syntaxhighlight lang="tex"  inline >S_{\mu,\nu}(z) = s_{\mu,\nu}(z) + 2^{\mu-1} \Gamma\left(\frac{\mu + \nu + 1}{2}\right) \Gamma\left(\frac{\mu - \nu + 1}{2}\right)\left(\sin \left[(\mu - \nu)\frac{\pi}{2}\right] J_\nu(z) - \cos \left[(\mu - \nu)\frac{\pi}{2}\right] Y_\nu(z)\right)</syntaxhighlight>
| <syntaxhighlight lang="tex"  inline >S_{\mu,\nu}(z) = s_{\mu,\nu}(z) + 2^{\mu-1} \Gamma\left(\frac{\mu + \nu + 1}{2}\right) \Gamma\left(\frac{\mu - \nu + 1}{2}\right)\left(\sin \left[(\mu - \nu)\frac{\pi}{2}\right] J_\nu(z) - \cos \left[(\mu - \nu)\frac{\pi}{2}\right] Y_\nu(z)\right)</syntaxhighlight>


| [[Lommel function#math.104.2| Lommel function]]  
| [[Lommel function#math.104.2| Lommel function]]
| {{na}}
| {{na}}
| {{na}}
| {{na}}
Line 4,344: Line 4,344:
}</syntaxhighlight>
}</syntaxhighlight>
</div></div>
</div></div>
|-  
|-
| 54  
| [[Gold 54]]
| <syntaxhighlight lang="tex"  inline >\mathbf{H}_{\alpha}(z) = \frac{z^{\alpha+1}}{2^{\alpha}\sqrt{\pi} \Gamma \left (\alpha+\tfrac{3}{2} \right )} {}_1F_2 \left (1,\tfrac{3}{2}, \alpha+\tfrac{3}{2},-\tfrac{z^2}{4} \right )</syntaxhighlight>
| <syntaxhighlight lang="tex"  inline >\mathbf{H}_{\alpha}(z) = \frac{z^{\alpha+1}}{2^{\alpha}\sqrt{\pi} \Gamma \left (\alpha+\tfrac{3}{2} \right )} {}_1F_2 \left (1,\tfrac{3}{2}, \alpha+\tfrac{3}{2},-\tfrac{z^2}{4} \right )</syntaxhighlight>


| [[Struve function#math.105.18| Struve function]]  
| [[Struve function#math.105.18| Struve function]]
| {{na}}
| {{na}}
| {{na}}
| {{na}}
Line 4,417: Line 4,417:
}</syntaxhighlight>
}</syntaxhighlight>
</div></div>
</div></div>
|-  
|-
| 55  
| [[Gold 55]]
| <syntaxhighlight lang="tex"  inline >f(t+p) = f(t)</syntaxhighlight>
| <syntaxhighlight lang="tex"  inline >f(t+p) = f(t)</syntaxhighlight>


| [[Hill differential equation#math.106.7| Hill differential equation]]  
| [[Hill differential equation#math.106.7| Hill differential equation]]
| {{ya}}
| {{ya}}
| {{ya}}
| {{ya}}
Line 4,479: Line 4,479:
}</syntaxhighlight>
}</syntaxhighlight>
</div></div>
</div></div>
|-  
|-
| 56  
| [[Gold 56]]
| <syntaxhighlight lang="tex"  inline >\mathbf{J}_\nu(z)=\cos\frac{\pi\nu}{2}\sum_{k=0}^\infty\frac{(-1)^kz^{2k}}{4^k\Gamma\left(k+\frac{\nu}{2}+1\right)\Gamma\left(k-\frac{\nu}{2}+1\right)}+\sin\frac{\pi\nu}{2}\sum_{k=0}^\infty\frac{(-1)^kz^{2k+1}}{2^{2k+1}\Gamma\left(k+\frac{\nu}{2}+\frac{3}{2}\right)\Gamma\left(k-\frac{\nu}{2}+\frac{3}{2}\right)}</syntaxhighlight>
| <syntaxhighlight lang="tex"  inline >\mathbf{J}_\nu(z)=\cos\frac{\pi\nu}{2}\sum_{k=0}^\infty\frac{(-1)^kz^{2k}}{4^k\Gamma\left(k+\frac{\nu}{2}+1\right)\Gamma\left(k-\frac{\nu}{2}+1\right)}+\sin\frac{\pi\nu}{2}\sum_{k=0}^\infty\frac{(-1)^kz^{2k+1}}{2^{2k+1}\Gamma\left(k+\frac{\nu}{2}+\frac{3}{2}\right)\Gamma\left(k-\frac{\nu}{2}+\frac{3}{2}\right)}</syntaxhighlight>


| [[Anger function#math.108.3| Anger function]]  
| [[Anger function#math.108.3| Anger function]]
| {{na}}
| {{na}}
| {{na}}
| {{na}}
Line 4,542: Line 4,542:
}</syntaxhighlight>
}</syntaxhighlight>
</div></div>
</div></div>
|-  
|-
| 57  
| [[Gold 57]]
| <syntaxhighlight lang="tex"  inline >(\operatorname{Ec})^'_{2K} = (\operatorname{Ec})^'_0 = 0, \;\; (\operatorname{Es})^'_{2K} = (\operatorname{Es})^'_0 = 0</syntaxhighlight>
| <syntaxhighlight lang="tex"  inline >(\operatorname{Ec})^'_{2K} = (\operatorname{Ec})^'_0 = 0, \;\; (\operatorname{Es})^'_{2K} = (\operatorname{Es})^'_0 = 0</syntaxhighlight>


| [[Lamé function#math.109.27| Lamé function]]  
| [[Lamé function#math.109.27| Lamé function]]
| {{ya}}
| {{ya}}
| -
| -
Line 4,593: Line 4,593:
}</syntaxhighlight>
}</syntaxhighlight>
</div></div>
</div></div>
|-  
|-
| 58  
| [[Gold 58]]
| <syntaxhighlight lang="tex"  inline >\int_{-\infty}^{+\infty} e^{-x^2} f(x)\,dx \approx \sum_{i=1}^n w_i f(x_i)</syntaxhighlight>
| <syntaxhighlight lang="tex"  inline >\int_{-\infty}^{+\infty} e^{-x^2} f(x)\,dx \approx \sum_{i=1}^n w_i f(x_i)</syntaxhighlight>


| [[Gauss–Hermite quadrature#math.110.1| Gauss–Hermite quadrature]]  
| [[Gauss–Hermite quadrature#math.110.1| Gauss–Hermite quadrature]]
| {{ya}}
| {{ya}}
| -
| -
Line 4,658: Line 4,658:
}</syntaxhighlight>
}</syntaxhighlight>
</div></div>
</div></div>
|-  
|-
| 59  
| [[Gold 59]]
| <syntaxhighlight lang="tex"  inline >p_n(x;a,b,c,d|q) =(ab,ac,ad;q)_na^{-n}\;_{4}\phi_3 \left[\begin{matrix} q^{-n}&abcdq^{n-1}&ae^{i\theta}&ae^{-i\theta} \\ ab&ac&ad \end{matrix} ; q,q \right]</syntaxhighlight>
| <syntaxhighlight lang="tex"  inline >p_n(x;a,b,c,d|q) =(ab,ac,ad;q)_na^{-n}\;_{4}\phi_3 \left[\begin{matrix} q^{-n}&abcdq^{n-1}&ae^{i\theta}&ae^{-i\theta} \\ ab&ac&ad \end{matrix} ; q,q \right]</syntaxhighlight>


| [[Askey–Wilson polynomials#math.111.0| Askey–Wilson polynomials]]  
| [[Askey–Wilson polynomials#math.111.0| Askey–Wilson polynomials]]
| {{na}}
| {{na}}
| {{na}}
| {{na}}
Line 4,718: Line 4,718:
}</syntaxhighlight>
}</syntaxhighlight>
</div></div>
</div></div>
|-  
|-
| 60  
| [[Gold 60]]
| <syntaxhighlight lang="tex"  inline >Q_n(x;\alpha,\beta,N)= {}_3F_2(-n,-x,n+\alpha+\beta+1;\alpha+1,-N+1;1).</syntaxhighlight>
| <syntaxhighlight lang="tex"  inline >Q_n(x;\alpha,\beta,N)= {}_3F_2(-n,-x,n+\alpha+\beta+1;\alpha+1,-N+1;1).</syntaxhighlight>


| [[Hahn polynomials#math.112.0| Hahn polynomials]]  
| [[Hahn polynomials#math.112.0| Hahn polynomials]]
| {{ya}}
| {{ya}}
| {{na}}
| {{na}}
Line 4,777: Line 4,777:
}</syntaxhighlight>
}</syntaxhighlight>
</div></div>
</div></div>
|-  
|-
| 61  
| [[Gold 61]]
| <syntaxhighlight lang="tex"  inline >\sum_{x=0}^\infty \frac{\mu^x}{x!} C_n(x; \mu)C_m(x; \mu)=\mu^{-n} e^\mu n! \delta_{nm}, \quad \mu>0</syntaxhighlight>
| <syntaxhighlight lang="tex"  inline >\sum_{x=0}^\infty \frac{\mu^x}{x!} C_n(x; \mu)C_m(x; \mu)=\mu^{-n} e^\mu n! \delta_{nm}, \quad \mu>0</syntaxhighlight>


| [[Charlier polynomials#math.113.2| Charlier polynomials]]  
| [[Charlier polynomials#math.113.2| Charlier polynomials]]
| {{na}}
| {{na}}
| {{na}}
| {{na}}
Line 4,829: Line 4,829:
}</syntaxhighlight>
}</syntaxhighlight>
</div></div>
</div></div>
|-  
|-
| 62  
| [[Gold 62]]
| <syntaxhighlight lang="tex"  inline >p_n(q^{-x}+q^{x+1}cd;a,b,c,d;q) = {}_4\phi_3\left[\begin{matrix} q^{-n} &abq^{n+1}&q^{-x}&q^{x+1}cd\\aq&bdq&cq\\ \end{matrix};q;q\right]</syntaxhighlight>
| <syntaxhighlight lang="tex"  inline >p_n(q^{-x}+q^{x+1}cd;a,b,c,d;q) = {}_4\phi_3\left[\begin{matrix} q^{-n} &abq^{n+1}&q^{-x}&q^{x+1}cd\\aq&bdq&cq\\ \end{matrix};q;q\right]</syntaxhighlight>


| [[Q-Racah polynomials#math.114.0| Q-Racah polynomials]]  
| [[Q-Racah polynomials#math.114.0| Q-Racah polynomials]]
| {{na}}
| {{na}}
| -
| -
Line 4,873: Line 4,873:
}</syntaxhighlight>
}</syntaxhighlight>
</div></div>
</div></div>
|-  
|-
| 63  
| [[Gold 63]]
| <syntaxhighlight lang="tex"  inline >\displaystyle c_n(q^{-x};a;q) = {}_2\phi_1(q^{-n},q^{-x};0;q,-q^{n+1}/a)</syntaxhighlight>
| <syntaxhighlight lang="tex"  inline >\displaystyle c_n(q^{-x};a;q) = {}_2\phi_1(q^{-n},q^{-x};0;q,-q^{n+1}/a)</syntaxhighlight>


| [[Q-Charlier polynomials#math.115.0| Q-Charlier polynomials]]  
| [[Q-Charlier polynomials#math.115.0| Q-Charlier polynomials]]
| {{ya}}
| {{ya}}
| -
| -
Line 4,921: Line 4,921:
}</syntaxhighlight>
}</syntaxhighlight>
</div></div>
</div></div>
|-  
|-
| 64  
| [[Gold 64]]
| <syntaxhighlight lang="tex"  inline >M_n(x,\beta,\gamma) = \sum_{k=0}^n (-1)^k{n \choose k}{x\choose k}k!(x+\beta)_{n-k}\gamma^{-k}</syntaxhighlight>
| <syntaxhighlight lang="tex"  inline >M_n(x,\beta,\gamma) = \sum_{k=0}^n (-1)^k{n \choose k}{x\choose k}k!(x+\beta)_{n-k}\gamma^{-k}</syntaxhighlight>


| [[Meixner polynomials#math.116.0| Meixner polynomials]]  
| [[Meixner polynomials#math.116.0| Meixner polynomials]]
| {{na}}
| {{na}}
| {{na}}
| {{na}}
Line 4,977: Line 4,977:
}</syntaxhighlight>
}</syntaxhighlight>
</div></div>
</div></div>
|-  
|-
| 65  
| [[Gold 65]]
| <syntaxhighlight lang="tex"  inline >x(1-x) \frac {\partial^2F_1(x,y)} {\partial x^2} + y(1-x) \frac {\partial^2F_1(x,y)} {\partial x \partial y} + [c - (a+b_1+1) x] \frac {\partial F_1(x,y)} {\partial x} - b_1 y \frac {\partial F_1(x,y)} {\partial y} - a b_1 F_1(x,y) = 0</syntaxhighlight>
| <syntaxhighlight lang="tex"  inline >x(1-x) \frac {\partial^2F_1(x,y)} {\partial x^2} + y(1-x) \frac {\partial^2F_1(x,y)} {\partial x \partial y} + [c - (a+b_1+1) x] \frac {\partial F_1(x,y)} {\partial x} - b_1 y \frac {\partial F_1(x,y)} {\partial y} - a b_1 F_1(x,y) = 0</syntaxhighlight>


| [[Appell series#math.117.19| Appell series]]  
| [[Appell series#math.117.19| Appell series]]
| {{na}}
| {{na}}
| {{na}}
| {{na}}
Line 5,047: Line 5,047:
}</syntaxhighlight>
}</syntaxhighlight>
</div></div>
</div></div>
|-  
|-
| 66  
| [[Gold 66]]
| <syntaxhighlight lang="tex"  inline >\Theta_\Lambda(\tau) = \sum_{x\in\Lambda}e^{i\pi\tau\|x\|^2}\qquad\mathrm{Im}\,\tau > 0</syntaxhighlight>
| <syntaxhighlight lang="tex"  inline >\Theta_\Lambda(\tau) = \sum_{x\in\Lambda}e^{i\pi\tau\|x\|^2}\qquad\mathrm{Im}\,\tau > 0</syntaxhighlight>


| [[Theta function of a lattice#math.118.0| Theta function of a lattice]]  
| [[Theta function of a lattice#math.118.0| Theta function of a lattice]]
| {{na}}
| {{na}}
| {{na}}
| {{na}}
Line 5,105: Line 5,105:
}</syntaxhighlight>
}</syntaxhighlight>
</div></div>
</div></div>
|-  
|-
| 67  
| [[Gold 67]]
| <syntaxhighlight lang="tex"  inline >\frac{d^2 S}{dz^2}+\left(\sum _{j=1}^N \frac{\gamma _j}{z - a_j} \right) \frac{dS}{dz} + \frac{V(z)}{\prod _{j=1}^N (z - a_j)}S = 0</syntaxhighlight>
| <syntaxhighlight lang="tex"  inline >\frac{d^2 S}{dz^2}+\left(\sum _{j=1}^N \frac{\gamma _j}{z - a_j} \right) \frac{dS}{dz} + \frac{V(z)}{\prod _{j=1}^N (z - a_j)}S = 0</syntaxhighlight>


| [[Heine–Stieltjes polynomials#math.119.0| Heine–Stieltjes polynomials]]  
| [[Heine–Stieltjes polynomials#math.119.0| Heine–Stieltjes polynomials]]
| {{na}}
| {{na}}
| -
| -
Line 5,185: Line 5,185:
}</syntaxhighlight>
}</syntaxhighlight>
</div></div>
</div></div>
|-  
|-
| 68  
| [[Gold 68]]
| <syntaxhighlight lang="tex"  inline >w(x) = \frac{k}{\sqrt{\pi}} x^{-1/2} \exp(-k^2\log^2 x)</syntaxhighlight>
| <syntaxhighlight lang="tex"  inline >w(x) = \frac{k}{\sqrt{\pi}} x^{-1/2} \exp(-k^2\log^2 x)</syntaxhighlight>


| [[Stieltjes–Wigert polynomials#math.120.0| Stieltjes–Wigert polynomials]]  
| [[Stieltjes–Wigert polynomials#math.120.0| Stieltjes–Wigert polynomials]]
| {{ya}}
| {{ya}}
| {{na}}
| {{na}}
Line 5,270: Line 5,270:
}</syntaxhighlight>
}</syntaxhighlight>
</div></div>
</div></div>
|-  
|-
| 69  
| [[Gold 69]]
| <syntaxhighlight lang="tex"  inline >y^2=x(x-1)(x-\lambda)</syntaxhighlight>
| <syntaxhighlight lang="tex"  inline >y^2=x(x-1)(x-\lambda)</syntaxhighlight>


| [[Modular lambda function#math.121.23| Modular lambda function]]  
| [[Modular lambda function#math.121.23| Modular lambda function]]
| {{ya}}
| {{ya}}
| {{ya}}
| {{ya}}
Line 5,331: Line 5,331:
}</syntaxhighlight>
}</syntaxhighlight>
</div></div>
</div></div>
|-  
|-
| 70  
| [[Gold 70]]
| <syntaxhighlight lang="tex"  inline >P_1^{(\lambda)}(x;\phi)=2(\lambda\cos\phi + x\sin\phi)</syntaxhighlight>
| <syntaxhighlight lang="tex"  inline >P_1^{(\lambda)}(x;\phi)=2(\lambda\cos\phi + x\sin\phi)</syntaxhighlight>


| [[Meixner–Pollaczek polynomials#math.122.3| Meixner–Pollaczek polynomials]]  
| [[Meixner–Pollaczek polynomials#math.122.3| Meixner–Pollaczek polynomials]]
| {{ya}}
| {{ya}}
| -
| -
Line 5,377: Line 5,377:
}</syntaxhighlight>
}</syntaxhighlight>
</div></div>
</div></div>
|-  
|-
| 71  
| [[Gold 71]]
| <syntaxhighlight lang="tex"  inline >P_n^{(\alpha,\beta)}(z)=\frac{(\alpha+1)_n}{n!}\,{}_2F_1\left(-n,1+\alpha+\beta+n;\alpha+1;\tfrac{1}{2}(1-z)\right)</syntaxhighlight>
| <syntaxhighlight lang="tex"  inline >P_n^{(\alpha,\beta)}(z)=\frac{(\alpha+1)_n}{n!}\,{}_2F_1\left(-n,1+\alpha+\beta+n;\alpha+1;\tfrac{1}{2}(1-z)\right)</syntaxhighlight>


| [[Jacobi polynomials#math.123.0| Jacobi polynomials]]  
| [[Jacobi polynomials#math.123.0| Jacobi polynomials]]
| {{ya}}
| {{ya}}
| {{ya}}
| {{ya}}
Line 5,444: Line 5,444:
}</syntaxhighlight>
}</syntaxhighlight>
</div></div>
</div></div>
|-  
|-
| 72  
| [[Gold 72]]
| <syntaxhighlight lang="tex"  inline >S_n(x^2;a,b,c)= {}_3F_2(-n,a+ix,a-ix;a+b,a+c;1).</syntaxhighlight>
| <syntaxhighlight lang="tex"  inline >S_n(x^2;a,b,c)= {}_3F_2(-n,a+ix,a-ix;a+b,a+c;1).</syntaxhighlight>


| [[Continuous dual Hahn polynomials#math.124.0| Continuous dual Hahn polynomials]]  
| [[Continuous dual Hahn polynomials#math.124.0| Continuous dual Hahn polynomials]]
| {{ya}}
| {{ya}}
| -
| -
Line 5,502: Line 5,502:
}</syntaxhighlight>
}</syntaxhighlight>
</div></div>
</div></div>
|-  
|-
| 73  
| [[Gold 73]]
| <syntaxhighlight lang="tex"  inline >P_n^{(\alpha,\beta)}=\lim_{t\to\infty}t^{-n}p_n\left(\tfrac12xt; \tfrac12(\alpha+1-it), \tfrac12(\beta+1+it), \tfrac12(\alpha+1+it), \tfrac12(\beta+1-it)\right)</syntaxhighlight>
| <syntaxhighlight lang="tex"  inline >P_n^{(\alpha,\beta)}=\lim_{t\to\infty}t^{-n}p_n\left(\tfrac12xt; \tfrac12(\alpha+1-it), \tfrac12(\beta+1+it), \tfrac12(\alpha+1+it), \tfrac12(\beta+1-it)\right)</syntaxhighlight>


| [[Continuous Hahn polynomials#math.125.15| Continuous Hahn polynomials]]  
| [[Continuous Hahn polynomials#math.125.15| Continuous Hahn polynomials]]
| {{na}}
| {{na}}
| {{na}}
| {{na}}
Line 5,562: Line 5,562:
}</syntaxhighlight>
}</syntaxhighlight>
</div></div>
</div></div>
|-  
|-
| 74  
| [[Gold 74]]
| <syntaxhighlight lang="tex"  inline >\sum^{b-1}_{s=a}w_n^{(c)}(s,a,b)w_m^{(c)}(s,a,b)\rho(s)[\Delta x(s-\frac{1}{2}) ]=\delta_{nm}d_n^2</syntaxhighlight>
| <syntaxhighlight lang="tex"  inline >\sum^{b-1}_{s=a}w_n^{(c)}(s,a,b)w_m^{(c)}(s,a,b)\rho(s)[\Delta x(s-\frac{1}{2}) ]=\delta_{nm}d_n^2</syntaxhighlight>


| [[Dual Hahn polynomials#math.126.7| Dual Hahn polynomials]]  
| [[Dual Hahn polynomials#math.126.7| Dual Hahn polynomials]]
| {{na}}
| {{na}}
| -
| -
Line 5,608: Line 5,608:
}</syntaxhighlight>
}</syntaxhighlight>
</div></div>
</div></div>
|-  
|-
| 75  
| [[Gold 75]]
| <syntaxhighlight lang="tex"  inline >p_n(x;a,b,c|q)=a^{-n}e^{-inu}(abe^{2iu},ac,ad;q)_n*_4\Phi_3(q^{-n},abcdq^{n-1},ae^{i{(t+2u)}},ae^{-it};abe^{2iu},ac,ad;q;q)</syntaxhighlight>
| <syntaxhighlight lang="tex"  inline >p_n(x;a,b,c|q)=a^{-n}e^{-inu}(abe^{2iu},ac,ad;q)_n*_4\Phi_3(q^{-n},abcdq^{n-1},ae^{i{(t+2u)}},ae^{-it};abe^{2iu},ac,ad;q;q)</syntaxhighlight>


| [[Continuous q-Hahn polynomials#math.127.0| Continuous q-Hahn polynomials]]  
| [[Continuous q-Hahn polynomials#math.127.0| Continuous q-Hahn polynomials]]
| {{na}}
| {{na}}
| {{na}}
| {{na}}
Line 5,674: Line 5,674:
}</syntaxhighlight>
}</syntaxhighlight>
</div></div>
</div></div>
|-  
|-
| 76  
| [[Gold 76]]
| <syntaxhighlight lang="tex"  inline >p_n(x;a,b,c\mid q)=\frac{(ab,ac;q)_n}{a^n}\cdot {_3\Phi_2}(q^-n,ae^{i\theta},ae^{-i\theta}; ab, ac \mid q;q)</syntaxhighlight>
| <syntaxhighlight lang="tex"  inline >p_n(x;a,b,c\mid q)=\frac{(ab,ac;q)_n}{a^n}\cdot {_3\Phi_2}(q^-n,ae^{i\theta},ae^{-i\theta}; ab, ac \mid q;q)</syntaxhighlight>


| [[Continuous dual q-Hahn polynomials#math.128.0| Continuous dual q-Hahn polynomials]]  
| [[Continuous dual q-Hahn polynomials#math.128.0| Continuous dual q-Hahn polynomials]]
| {{na}}
| {{na}}
| {{na}}
| {{na}}
Line 5,736: Line 5,736:
}</syntaxhighlight>
}</syntaxhighlight>
</div></div>
</div></div>
|-  
|-
| 77  
| [[Gold 77]]
| <syntaxhighlight lang="tex"  inline >Q_n(x;a,b,N;q)=\;_{3}\phi_2\left[\begin{matrix} q^-n & abq^n+1 &  x \\ aq & q^-N  \end{matrix} ; q,q \right]</syntaxhighlight>
| <syntaxhighlight lang="tex"  inline >Q_n(x;a,b,N;q)=\;_{3}\phi_2\left[\begin{matrix} q^-n & abq^n+1 &  x \\ aq & q^-N  \end{matrix} ; q,q \right]</syntaxhighlight>


| [[Q-Hahn polynomials#math.129.0| Q-Hahn polynomials]]  
| [[Q-Hahn polynomials#math.129.0| Q-Hahn polynomials]]
| {{na}}
| {{na}}
| {{na}}
| {{na}}
Line 5,796: Line 5,796:
}</syntaxhighlight>
}</syntaxhighlight>
</div></div>
</div></div>
|-  
|-
| 78  
| [[Gold 78]]
| <syntaxhighlight lang="tex"  inline >x=</syntaxhighlight>
| <syntaxhighlight lang="tex"  inline >x=</syntaxhighlight>


| [[Al-Salam–Chihara polynomials#math.131.0| Al-Salam–Chihara polynomials]]  
| [[Al-Salam–Chihara polynomials#math.131.0| Al-Salam–Chihara polynomials]]
| {{na}}
| {{na}}
| {{na}}
| {{na}}
Line 5,851: Line 5,851:
}</syntaxhighlight>
}</syntaxhighlight>
</div></div>
</div></div>
|-  
|-
| 79  
| [[Gold 79]]
| <syntaxhighlight lang="tex"  inline >\Phi_n^*(z)=z^n\overline{\Phi_n(1/\overline{z})}</syntaxhighlight>
| <syntaxhighlight lang="tex"  inline >\Phi_n^*(z)=z^n\overline{\Phi_n(1/\overline{z})}</syntaxhighlight>


| [[Orthogonal polynomials on the unit circle#math.132.7| Orthogonal polynomials on the unit circle]]  
| [[Orthogonal polynomials on the unit circle#math.132.7| Orthogonal polynomials on the unit circle]]
| {{na}}
| {{na}}
| {{na}}
| {{na}}
Line 5,903: Line 5,903:
}</syntaxhighlight>
}</syntaxhighlight>
</div></div>
</div></div>
|-  
|-
| 80  
| [[Gold 80]]
| <syntaxhighlight lang="tex"  inline >P_n(x) = c_n \, \det \begin{bmatrix}m_0 & m_1 &  m_2 &\cdots & m_n \\m_1 & m_2 &  m_3 &\cdots & m_{n+1} \\&&\vdots&& \vdots \\m_{n-1} &m_n& m_{n+1} &\cdots &m_{2n-1}\\1 & x & x^2 & \cdots & x^n\end{bmatrix}</syntaxhighlight>
| <syntaxhighlight lang="tex"  inline >P_n(x) = c_n \, \det \begin{bmatrix}m_0 & m_1 &  m_2 &\cdots & m_n \\m_1 & m_2 &  m_3 &\cdots & m_{n+1} \\&&\vdots&& \vdots \\m_{n-1} &m_n& m_{n+1} &\cdots &m_{2n-1}\\1 & x & x^2 & \cdots & x^n\end{bmatrix}</syntaxhighlight>


| [[Orthogonal polynomials#math.133.8| Orthogonal polynomials]]  
| [[Orthogonal polynomials#math.133.8| Orthogonal polynomials]]
| {{ya}}
| {{ya}}
| -
| -
Line 5,963: Line 5,963:
}</syntaxhighlight>
}</syntaxhighlight>
</div></div>
</div></div>
|-  
|-
| 81  
| [[Gold 81]]
| <syntaxhighlight lang="tex"  inline >\displaystyle  p_n(x;a,b;q) = {}_2\phi_1(q^{-n},abq^{n+1};aq;q,xq)</syntaxhighlight>
| <syntaxhighlight lang="tex"  inline >\displaystyle  p_n(x;a,b;q) = {}_2\phi_1(q^{-n},abq^{n+1};aq;q,xq)</syntaxhighlight>


| [[Little q-Jacobi polynomials#math.134.0| Little q-Jacobi polynomials]]  
| [[Little q-Jacobi polynomials#math.134.0| Little q-Jacobi polynomials]]
| {{ya}}
| {{ya}}
| {{na}}
| {{na}}
Line 6,026: Line 6,026:
}</syntaxhighlight>
}</syntaxhighlight>
</div></div>
</div></div>
|-  
|-
| 82  
| [[Gold 82]]
| <syntaxhighlight lang="tex"  inline >\displaystyle  P_n(x;a,b,c;q)={}_3\phi_2(q^{-n},abq^{n+1},x;aq,cq;q,q)</syntaxhighlight>
| <syntaxhighlight lang="tex"  inline >\displaystyle  P_n(x;a,b,c;q)={}_3\phi_2(q^{-n},abq^{n+1},x;aq,cq;q,q)</syntaxhighlight>


| [[Big q-Jacobi polynomials#math.135.0| Big q-Jacobi polynomials]]  
| [[Big q-Jacobi polynomials#math.135.0| Big q-Jacobi polynomials]]
| {{ya}}
| {{ya}}
| {{na}}
| {{na}}
Line 6,085: Line 6,085:
}</syntaxhighlight>
}</syntaxhighlight>
</div></div>
</div></div>
|-  
|-
| 83  
| [[Gold 83]]
| <syntaxhighlight lang="tex"  inline >P_n(x;a,b;q)=\frac{1}{(b^{-1}*q^{-n};q,n)}*_2\Phi_1(q^{-n},aqx^{-1};aq|q;\frac{x}{b})</syntaxhighlight>
| <syntaxhighlight lang="tex"  inline >P_n(x;a,b;q)=\frac{1}{(b^{-1}*q^{-n};q,n)}*_2\Phi_1(q^{-n},aqx^{-1};aq|q;\frac{x}{b})</syntaxhighlight>


| [[Big q-Laguerre polynomials#math.137.0| Big q-Laguerre polynomials]]  
| [[Big q-Laguerre polynomials#math.137.0| Big q-Laguerre polynomials]]
| {{na}}
| {{na}}
| {{na}}
| {{na}}
Line 6,151: Line 6,151:
}</syntaxhighlight>
}</syntaxhighlight>
</div></div>
</div></div>
|-  
|-
| 84  
| [[Gold 84]]
| <syntaxhighlight lang="tex"  inline >K_n(\lambda(x);c,N|q)=_3\Phi_2(q^{-n},q^{-x},cq^{x-N};q^{-N},0|q;q)</syntaxhighlight>
| <syntaxhighlight lang="tex"  inline >K_n(\lambda(x);c,N|q)=_3\Phi_2(q^{-n},q^{-x},cq^{x-N};q^{-N},0|q;q)</syntaxhighlight>


| [[Dual q-Krawtchouk polynomials#math.138.0| Dual q-Krawtchouk polynomials]]  
| [[Dual q-Krawtchouk polynomials#math.138.0| Dual q-Krawtchouk polynomials]]
| {{na}}
| {{na}}
| -
| -
Line 6,209: Line 6,209:
}</syntaxhighlight>
}</syntaxhighlight>
</div></div>
</div></div>
|-  
|-
| 85  
| [[Gold 85]]
| <syntaxhighlight lang="tex"  inline >P_{n}^{(\alpha)}(x|q)=\frac{(q^\alpha+1;q)_{n}}{(q;q)_{n}}</syntaxhighlight>
| <syntaxhighlight lang="tex"  inline >P_{n}^{(\alpha)}(x|q)=\frac{(q^\alpha+1;q)_{n}}{(q;q)_{n}}</syntaxhighlight>


| [[Continuous q-Laguerre polynomials#math.139.0| Continuous q-Laguerre polynomials]]  
| [[Continuous q-Laguerre polynomials#math.139.0| Continuous q-Laguerre polynomials]]
| {{na}}
| {{na}}
| {{na}}
| {{na}}
Line 6,267: Line 6,267:
}</syntaxhighlight>
}</syntaxhighlight>
</div></div>
</div></div>
|-  
|-
| 86  
| [[Gold 86]]
| <syntaxhighlight lang="tex"  inline >\displaystyle  p_n(x;a|q) = {}_2\phi_1(q^{-n},0;aq;q,qx) = \frac{1}{(a^{-1}q^{-n};q)_n}{}_2\phi_0(q^{-n},x^{-1};;q,x/a)</syntaxhighlight>
| <syntaxhighlight lang="tex"  inline >\displaystyle  p_n(x;a|q) = {}_2\phi_1(q^{-n},0;aq;q,qx) = \frac{1}{(a^{-1}q^{-n};q)_n}{}_2\phi_0(q^{-n},x^{-1};;q,x/a)</syntaxhighlight>


| [[Little q-Laguerre polynomials#math.142.0| Little q-Laguerre polynomials]]  
| [[Little q-Laguerre polynomials#math.142.0| Little q-Laguerre polynomials]]
| {{na}}
| {{na}}
| {{na}}
| {{na}}
Line 6,332: Line 6,332:
}</syntaxhighlight>
}</syntaxhighlight>
</div></div>
</div></div>
|-  
|-
| 87  
| [[Gold 87]]
| <syntaxhighlight lang="tex"  inline >y_{n}(x;a;q)=\;_{2}\phi_1 \left(\begin{matrix} q^{-N} & -aq^{n} \\ 0  \end{matrix} ; q,qx \right)</syntaxhighlight>
| <syntaxhighlight lang="tex"  inline >y_{n}(x;a;q)=\;_{2}\phi_1 \left(\begin{matrix} q^{-N} & -aq^{n} \\ 0  \end{matrix} ; q,qx \right)</syntaxhighlight>


| [[Q-Bessel polynomials#math.143.0| Q-Bessel polynomials]]  
| [[Q-Bessel polynomials#math.143.0| Q-Bessel polynomials]]
| {{na}}
| {{na}}
| {{na}}
| {{na}}
Line 6,390: Line 6,390:
}</syntaxhighlight>
}</syntaxhighlight>
</div></div>
</div></div>
|-  
|-
| 88  
| [[Gold 88]]
| <syntaxhighlight lang="tex"  inline >h_n(ix;q^{-1}) = i^n\hat h_n(x;q)</syntaxhighlight>
| <syntaxhighlight lang="tex"  inline >h_n(ix;q^{-1}) = i^n\hat h_n(x;q)</syntaxhighlight>


| [[Discrete q-Hermite polynomials#math.144.2| Discrete q-Hermite polynomials]]  
| [[Discrete q-Hermite polynomials#math.144.2| Discrete q-Hermite polynomials]]
| {{na}}
| {{na}}
| -
| -
Line 6,454: Line 6,454:
}</syntaxhighlight>
}</syntaxhighlight>
</div></div>
</div></div>
|-  
|-
| 89  
| [[Gold 89]]
| <syntaxhighlight lang="tex"  inline >P_{n}(x;a\mid q) = a^{-n} e^{in\phi} \frac{a^2;q_n}{(q;q)_n} {_3}\Phi_2(q^-n, ae^{i(\theta+2\phi)}, ae^{-i\theta}; a^2, 0 \mid q; q)</syntaxhighlight>
| <syntaxhighlight lang="tex"  inline >P_{n}(x;a\mid q) = a^{-n} e^{in\phi} \frac{a^2;q_n}{(q;q)_n} {_3}\Phi_2(q^-n, ae^{i(\theta+2\phi)}, ae^{-i\theta}; a^2, 0 \mid q; q)</syntaxhighlight>


| [[Q-Meixner–Pollaczek polynomials#math.145.0| Q-Meixner–Pollaczek polynomials]]  
| [[Q-Meixner–Pollaczek polynomials#math.145.0| Q-Meixner–Pollaczek polynomials]]
| {{na}}
| {{na}}
| {{na}}
| {{na}}
Line 6,518: Line 6,518:
}</syntaxhighlight>
}</syntaxhighlight>
</div></div>
</div></div>
|-  
|-
| 90  
| [[Gold 90]]
| <syntaxhighlight lang="tex"  inline >\displaystyle  L_n^{(\alpha)}(x;q) = \frac{(q^{\alpha+1};q)_n}{(q;q)_n} {}_1\phi_1(q^{-n};q^{\alpha+1};q,-q^{n+\alpha+1}x)</syntaxhighlight>
| <syntaxhighlight lang="tex"  inline >\displaystyle  L_n^{(\alpha)}(x;q) = \frac{(q^{\alpha+1};q)_n}{(q;q)_n} {}_1\phi_1(q^{-n};q^{\alpha+1};q,-q^{n+\alpha+1}x)</syntaxhighlight>


| [[Q-Laguerre polynomials#math.149.0| Q-Laguerre polynomials]]  
| [[Q-Laguerre polynomials#math.149.0| Q-Laguerre polynomials]]
| {{ya}}
| {{ya}}
| {{na}}
| {{na}}
Line 6,585: Line 6,585:
}</syntaxhighlight>
}</syntaxhighlight>
</div></div>
</div></div>
|-  
|-
| 91  
| [[Gold 91]]
| <syntaxhighlight lang="tex"  inline >\sum_{n=0}^\infty H_n(x \mid q) \frac{t^n}{(q;q)_n} = \frac{1}{\left( t e^{i \theta},t e^{-i \theta};q \right)_\infty}</syntaxhighlight>
| <syntaxhighlight lang="tex"  inline >\sum_{n=0}^\infty H_n(x \mid q) \frac{t^n}{(q;q)_n} = \frac{1}{\left( t e^{i \theta},t e^{-i \theta};q \right)_\infty}</syntaxhighlight>


| [[Continuous q-Hermite polynomials#math.150.3| Continuous q-Hermite polynomials]]  
| [[Continuous q-Hermite polynomials#math.150.3| Continuous q-Hermite polynomials]]
| {{na}}
| {{na}}
| -
| -
Line 6,635: Line 6,635:
}</syntaxhighlight>
}</syntaxhighlight>
</div></div>
</div></div>
|-  
|-
| 92  
| [[Gold 92]]
| <syntaxhighlight lang="tex"  inline >w^{\prime\prime}+\xi\sin(2z)w^{\prime}+(\eta-p\xi\cos(2z))w=0. </syntaxhighlight>
| <syntaxhighlight lang="tex"  inline >w^{\prime\prime}+\xi\sin(2z)w^{\prime}+(\eta-p\xi\cos(2z))w=0. </syntaxhighlight>


| [[Ince equation#math.151.0| Ince equation]]  
| [[Ince equation#math.151.0| Ince equation]]
| {{ya}}
| {{ya}}
| {{na}}
| {{na}}
Line 6,709: Line 6,709:
}</syntaxhighlight>
}</syntaxhighlight>
</div></div>
</div></div>
|-  
|-
| 93  
| [[Gold 93]]
| <syntaxhighlight lang="tex"  inline >Q_v^\mu(x)= \cos(\mu\pi)\left(\frac{1+x}{1-x}\right)^{\mu/2}\frac{F(v+1,-v;1-\mu;1/2-2/x)}  {\Gamma(1-\mu ) }</syntaxhighlight>
| <syntaxhighlight lang="tex"  inline >Q_v^\mu(x)= \cos(\mu\pi)\left(\frac{1+x}{1-x}\right)^{\mu/2}\frac{F(v+1,-v;1-\mu;1/2-2/x)}  {\Gamma(1-\mu ) }</syntaxhighlight>


| [[Ferrers function#math.152.1| Ferrers function]]  
| [[Ferrers function#math.152.1| Ferrers function]]
| {{na}}
| {{na}}
| {{na}}
| {{na}}
Line 6,772: Line 6,772:
}</syntaxhighlight>
}</syntaxhighlight>
</div></div>
</div></div>
|-  
|-
| 94  
| [[Gold 94]]
| <syntaxhighlight lang="tex"  inline >H_{-v}^{(1)}(z,w)=e^{v\pi i}H_v^{(1)}(z,w)</syntaxhighlight>
| <syntaxhighlight lang="tex"  inline >H_{-v}^{(1)}(z,w)=e^{v\pi i}H_v^{(1)}(z,w)</syntaxhighlight>


| [[Incomplete Bessel functions#math.153.27| Incomplete Bessel functions]]  
| [[Incomplete Bessel functions#math.153.27| Incomplete Bessel functions]]
| {{ya}}
| {{ya}}
| -
| -
Line 6,820: Line 6,820:
}</syntaxhighlight>
}</syntaxhighlight>
</div></div>
</div></div>
|-  
|-
| 95  
| [[Gold 95]]
| <syntaxhighlight lang="tex"  inline >K_v(x,y)=\int_1^\infty\frac{e^{-xt-\frac{y}{t}}}{t^{v+1}}dt</syntaxhighlight>
| <syntaxhighlight lang="tex"  inline >K_v(x,y)=\int_1^\infty\frac{e^{-xt-\frac{y}{t}}}{t^{v+1}}dt</syntaxhighlight>


| [[Incomplete Bessel K function/generalized incomplete gamma function#math.154.0| Incomplete Bessel K function/generalized incomplete gamma function]]  
| [[Incomplete Bessel K function/generalized incomplete gamma function#math.154.0| Incomplete Bessel K function/generalized incomplete gamma function]]
| {{ya}}
| {{ya}}
| {{na}}
| {{na}}

Revision as of 14:53, 1 September 2021

Download gold-data.json.

Entry Info Translations Reason For Failure
# Formula Title Semantic LaTeX CAS Translations Definition / Substitution Pattern Matching Derivatives / Primes Missing Infos Untranslatable Macro Explanation Evaluation Data
Gold 1 \begin{align}J_{-(m+\frac{1}{2})}(x) &= (-1)^{m+1} Y_{m+\frac{1}{2}}(x), \\Y_{-(m+\frac{1}{2})}(x) &= (-1)^m J_{m+\frac{1}{2}}(x).\end{align} Bessel function Yes Yes - - - - - -
Full data:
Gold 2 E(e) \,=\, \int_0^{\pi/2}\sqrt {1 - e^2 \sin^2\theta}\ d\theta Ellipse No No - ☒N - - - e was interpreted as Euler's number
Full data:
Gold 3 F(x;k) = u Elliptic integral No No ☒N - - - - x is substituted
Full data:
Gold 4 \frac{1}{\Gamma(z)} = \frac{i}{2\pi}\int_C (-t)^{-z}e^{-t}\,dt Gamma function Yes - - ☒N - - - Contour integrals cannot be translated.
Full data:
Gold 5 2^{4} = 2 \times2 \times 2 \times 2 = 16 Logarithm Yes Yes - - - - - -
Full data:
Gold 6 \psi(x) := \sum_{n=1}^\infty e^{-n^2 \pi x} Riemann zeta function Yes Yes - - - - - -
Full data:
Gold 7 \operatorname{li}(x) = \lim_{\varepsilon \to 0+} \left( \int_0^{1-\varepsilon} \frac{dt}{\ln t} + \int_{1+\varepsilon}^x \frac{dt}{\ln t} \right) Logarithmic integral function Yes Yes - - - - - -
Full data:
Gold 8 w_{i} = \frac{1}{p'_{n}(x_{i})}\int_{a}^{b}\omega(x)\frac{p_{n}(x)}{x-x_{i}}dx Gaussian quadrature Yes No - - ☒N - - -
Full data:
Gold 9 \begin{align}x & =ue^u, \\[5pt]\frac{dx}{du} & =(u+1)e^u.\end{align} Lambert W function No No ☒N - - - - -
Full data:
Gold 10 \frac{1}{\left| \mathbf{x}-\mathbf{x}' \right|} = \frac{1}{\sqrt{r^2+{r'}^2-2r{r'}\cos\gamma}} = \sum_{\ell=0}^\infty \frac{{r'}^\ell}{r^{\ell+1}} P_\ell(\cos \gamma) Legendre polynomials Yes No - - ☒N - - -
Full data:
Gold 11 \operatorname{erf}^{(k)}(z) = \frac{2 (-1)^{k-1}}{\sqrt{\pi}} \mathit{H}_{k-1}(z) e^{-z^2} = \frac{2}{\sqrt{\pi}} \frac{d^{k-1}}{dz^{k-1}} \left(e^{-z^2}\right),\qquad k=1, 2, \dots Error function Yes No - - ☒N - - erf(k) was not detected as k-th derivative but as power.
Full data:
Gold 12 x_k = \cos\left(\frac{\pi(k+1/2)}{n}\right),\quad k=0,\ldots,n-1 Chebyshev polynomials Yes Yes - - - - - -
Full data:
Gold 13 E(x, y; u) := \sum_{n=0}^\infty u^n \, \psi_n (x) \, \psi_n (y) = \frac{1}{\sqrt{\pi (1 - u^2)}} \, \exp\left(-\frac{1 - u}{1 + u} \, \frac{(x + y)^2}{4} - \frac{1 + u}{1 - u} \, \frac{(x - y)^2}{4}\right) Hermite polynomials Yes Yes - - - - - -
Full data:
Gold 14 x = \pm 1 Legendre function Yes Yes - - - - - -
Full data:
Gold 15 E_n=2^nE_n(\tfrac{1}{2}) Bernoulli polynomials No No - ☒N - - - Both E where detected as Euler's number but the second is Euler polynomial.
Full data:
Gold 16 \operatorname{Si}(ix) = i\operatorname{Shi}(x) Trigonometric integral No No - - - - - Integral was not tagged as a noun by CoreNLP. Hence, the macro for hyperbolic sine function was retrieved too late and not considered for replacements.
Full data:
Gold 17 f(z)=\frac{1}{\Beta(x,y)} Beta function No No ☒N - - ☒N - The original formula contained f(z) but should have been f(x,z). This was fixed in the Wikipedia article after we generated the dataset.
Full data:
Gold 18 \begin{align}\int x^m e^{ix^n}\,dx & =\frac{x^{m+1}}{m+1}\,_1F_1\left(\begin{array}{c} \frac{m+1}{n}\\1+\frac{m+1}{n}\end{array}\mid ix^n\right) \\[6px]& =\frac{1}{n} i^\frac{m+1}{n}\gamma\left(\frac{m+1}{n},-ix^n\right),\end{align} Fresnel integral No No - ☒N - - - Matrix argument of 1F1 does not exist in the DLMF.
Full data:
Gold 19 T_n(x) = \frac{\Gamma(1/2)\sqrt{1-x^2}}{(-2)^n\,\Gamma(n+1/2)} \ \frac{d^n}{dx^n}\left([1-x^2]^{n-1/2}\right) Classical orthogonal polynomials No No - - - ☒N - No info about Gamma function.
Full data:
Gold 20 {}_1F_0(1;;z) = \sum_{n \geqslant 0} z^n = (1-z)^{-1} Generalized hypergeometric function No No - ☒N - - - Empty arguments did not match the semantic macros (bug).
Full data:
Gold 21 \chi(-1) = 1 Dirichlet L-function Yes No - - - ☒N - It was translated to DirichletCharacter[1, k, - 1] == 1. The only valid input for k is 1.
Full data:
Gold 22 \operatorname{Bi}'(z)\sim \frac{z^{\frac{1}{4}}e^{\frac{2}{3}z^{\frac{3}{2}}}}{\sqrt\pi\,}\left[ \sum_{n=0}^{\infty}\frac{1+6n}{1-6n} \dfrac{ \Gamma(n+\frac{5}{6})\Gamma(n+\frac{1}{6})\left(\frac{3}{4}\right)^n}{2\pi n! z^{3n/2}} \right] Airy function No - - - ☒N - - No translation possible for \sim
Full data:
Gold 23 F'(y)=1-2yF(y) Dawson function No No - - ☒N ☒N - No dependency to Dawson.
Full data:
Gold 24 s\not =1 Hurwitz zeta function Yes Yes - - - - - -
Full data:
Gold 25 q = e^{i\pi\tau} Theta function Yes Yes - - - - - -
Full data:
Gold 26 \frac{\mathrm{d}}{\mathrm{d}z} \operatorname{dn}(z) = - k^2 \operatorname{sn}(z) \operatorname{cn}(z) Jacobi elliptic functions Yes Yes - - - - - -
Full data:
Gold 27 \int_{-\infty}^\infty \frac {\gamma\left(\frac s 2, z^2 \pi \right)} {(z^2 \pi)^\frac s 2} e^{-2 \pi i k z} \mathrm d z = \frac {\Gamma\left(\frac {1-s} 2, k^2 \pi \right)} {(k^2 \pi)^\frac {1-s} 2} Incomplete gamma function Yes Yes - - - - - -
Full data:
Gold 28 _{1}(z) = Polylogarithm No No - - - - - Wrong math detection.
Full data:
Gold 29 \int_{-\infty}^\infty \operatorname{sinc}(t) \, e^{-i 2 \pi f t}\,dt = \operatorname{rect}(f) Sinc function Yes Yes - - - - - -
Full data:
Gold 30 N=1 Exponential integral Yes Yes - - - - - -
Full data:
Gold 31 \sum_{n=0}^\infty \frac{n!\,\Gamma\left(\alpha + 1\right)}{\Gamma\left(n+\alpha+1\right)}L_n^{(\alpha)}(x)L_n^{(\alpha)}(y)t^n=\frac{1}{(1-t)^{\alpha + 1}}e^{-(x+y)t/(1-t)}\,_0F_1\left(;\alpha + 1;\frac{xyt}{(1-t)^2}\right) Laguerre polynomials No No - - - ☒N - No infos about the gamma function.
Full data:
Gold 32 c_{lm} = (-1)^m \frac{(\ell-m)!}{(\ell+m)!} Associated Legendre polynomials Yes Yes - - - - - -
Full data:
Gold 33 \mathrm{Gi}(x) = \frac{1}{\pi} \int_0^\infty \sin\left(\frac{t^3}{3} + xt\right)\, dt Scorer's function Yes Yes - - - - - -
Full data:
Gold 34 \frac{\partial^2}{\partial x^2} V(x;\sigma,\gamma)= \frac{x^2-\gamma^2-\sigma^2}{\sigma^4} \frac{\operatorname{Re}[w(z)]}{\sigma\sqrt{2 \pi}}-\frac{2 x \gamma}{\sigma^4} \frac{\operatorname{Im}[w(z)]}{\sigma\sqrt{2 \pi}}+\frac{\gamma}{\sigma^4}\frac{1}{\pi} Voigt profile Yes No - - - - ☒N -
Full data:
Gold 35 \Phi(z,s,a) = \frac{1}{1-z} \frac{1}{a^{s}} + \sum_{n=1}^{N-1} \frac{(-1)^{n} \mathrm{Li}_{-n}(z)}{n!} \frac{(s)_{n}}{a^{n+s}} +O(a^{-N-s}) Lerch zeta function No No - - - - ☒N Landau notation.
Full data:
Gold 36 M(1,2,z)=(e^z-1)/z,\ \ M(1,3,z)=2!(e^z-1-z)/z^2 Confluent hypergeometric function Yes Yes - - - - - -
Full data:
Gold 37 \sigma = \pm 1 Mathieu function Yes Yes - - - - - -
Full data:
Gold 38 \frac{d^2f}{dz^2} + \left(\tilde{a}z^2+\tilde{b}z+\tilde{c}\right)f=0 Parabolic cylinder function Yes No - - - ☒N - ODE. f does not show the argument z.
Full data:
Gold 39 c=\infty Painlevé transcendents Yes Yes - - - - - -
Full data:
Gold 40 c = a + 1 Hypergeometric function Yes Yes - - - - - -
Full data:
Gold 41 \frac{1}{\Gamma(z)}= z e^{\gamma z} \prod_{k=1}^\infty \left\{ \left(1+\frac{z}{k}\right)e^{-z/k} \right\} Barnes G-function Yes Yes - - - - - -
Full data:
Gold 42 192/24 = 8 = 2 \times 4 Heun function Yes Yes - - - - - -
Full data:
Gold 43 =2 Gegenbauer polynomials No No - - - - - Wrong math detection.
Full data:
Gold 44 \lim_{q\to 1}\;_{j}\phi_k \left[\begin{matrix} q^{a_1} & q^{a_2} & \ldots & q^{a_j} \\ q^{b_1} & q^{b_2} & \ldots & q^{b_k} \end{matrix} ; q,(q-1)^{1+k-j} z \right]=\;_{j}F_k \left[\begin{matrix} a_1 & a_2 & \ldots & a_j \\ b_1 & b_2 & \ldots & b_k \end{matrix} ;z \right] Basic hypergeometric series No - - ☒N - - - Indef length of arguments are not translatable.
Full data:
Gold 45 \frac{d^2w}{dz^2}+\left(-\frac{1}{4}+\frac{\kappa}{z}+\frac{1/4-\mu^2}{z^2}\right)w=0 Whittaker function Yes Yes - - - - - -
Full data:
Gold 46 e_1=\tfrac12,\qquad e_2=0,\qquad e_3=-\tfrac12 Lemniscatic elliptic function Yes No - - - - - Multi-equation problem (bug).
Full data:
Gold 47 \gamma> 0,n-p=m-q> 0 Meijer G-function Yes Yes - - - - - -
Full data:
Gold 48 \begin{pmatrix} j \\ m \quad m'\end{pmatrix}:= \sqrt{2 j + 1}\begin{pmatrix} j & 0 & j \\ m & 0 & m'\end{pmatrix}= (-1)^{j - m'} \delta_{m, -m'} 3-j symbol Yes No - - - - - LCT does not support matrix translations yet.
Full data:
Gold 49 \begin{Bmatrix} i & j & \ell\\ k & m & n \end{Bmatrix}= (\Phi_{i,j}^{k,m})_{\ell,n} 6-j symbol No - - - - ☒N - A matrix cannot be defined as a function in Mathematica.
Full data:
Gold 50 \sum_{j_7 j_8} (2j_7+1)(2j_8+1) \begin{Bmatrix} j_1 & j_2 & j_3\\ j_4 & j_5 & j_6\\ j_7 & j_8 & j_9 \end{Bmatrix} \begin{Bmatrix} j_1 & j_2 & j_3'\\ j_4 & j_5 & j_6'\\ j_7 & j_8 & j_9 \end{Bmatrix} = \frac{\delta_{j_3j_3'}\delta_{j_6j_6'} \begin{Bmatrix} j_1 & j_2 & j_3 \end{Bmatrix} \begin{Bmatrix} j_4 & j_5 & j_6\end{Bmatrix} \begin{Bmatrix} j_3 & j_6 & j_9 \end{Bmatrix}} {(2j_3+1)(2j_6+1)} 9-j symbol No - - - - - - Mistakenly interpreted as Wigner 6-j rather than 9-j.
Full data:
Gold 51 \mathcal{K}_k(x; n,q) = \sum_{j=0}^{k}(-q)^j (q-1)^{k-j} \binom {n-j}{k-j} \binom{x}{j} Kravchuk polynomials No No - - - ☒N - Krawtchouk vs Kravchuk (synonym problem)
Full data:
Gold 52 g_1(x) = \sum_{k \geq 1} \frac{\sin(k \pi / 4)}{k! (8x)^k} \prod_{l = 1}^k (2l - 1)^2 Kelvin functions Yes No ☒N - - - - -
Full data:
Gold 53 S_{\mu,\nu}(z) = s_{\mu,\nu}(z) + 2^{\mu-1} \Gamma\left(\frac{\mu + \nu + 1}{2}\right) \Gamma\left(\frac{\mu - \nu + 1}{2}\right)\left(\sin \left[(\mu - \nu)\frac{\pi}{2}\right] J_\nu(z) - \cos \left[(\mu - \nu)\frac{\pi}{2}\right] Y_\nu(z)\right) Lommel function No No - - - ☒N - No information about gamma function
Full data:
Gold 54 \mathbf{H}_{\alpha}(z) = \frac{z^{\alpha+1}}{2^{\alpha}\sqrt{\pi} \Gamma \left (\alpha+\tfrac{3}{2} \right )} {}_1F_2 \left (1,\tfrac{3}{2}, \alpha+\tfrac{3}{2},-\tfrac{z^2}{4} \right ) Struve function No No - ☒N - - - Arguments of 1F2 are split by commas. That is wrong notation. Hence, our semantic patterns did not match.
Full data:
Gold 55 f(t+p) = f(t) Hill differential equation Yes Yes - - - - - -
Full data:
Gold 56 \mathbf{J}_\nu(z)=\cos\frac{\pi\nu}{2}\sum_{k=0}^\infty\frac{(-1)^kz^{2k}}{4^k\Gamma\left(k+\frac{\nu}{2}+1\right)\Gamma\left(k-\frac{\nu}{2}+1\right)}+\sin\frac{\pi\nu}{2}\sum_{k=0}^\infty\frac{(-1)^kz^{2k+1}}{2^{2k+1}\Gamma\left(k+\frac{\nu}{2}+\frac{3}{2}\right)\Gamma\left(k-\frac{\nu}{2}+\frac{3}{2}\right)} Anger function No No - - - ☒N - No information about gamma function.
Full data:
Gold 57 (\operatorname{Ec})^'_{2K} = (\operatorname{Ec})^'_0 = 0, \;\; (\operatorname{Es})^'_{2K} = (\operatorname{Es})^'_0 = 0 Lamé function Yes - - - - - - No translation possible.
Full data:
Gold 58 \int_{-\infty}^{+\infty} e^{-x^2} f(x)\,dx \approx \sum_{i=1}^n w_i f(x_i) Gauss–Hermite quadrature Yes - - - - - - No translation possible.
Full data:
Gold 59 p_n(x;a,b,c,d|q) =(ab,ac,ad;q)_na^{-n}\;_{4}\phi_3 \left[\begin{matrix} q^{-n}&abcdq^{n-1}&ae^{i\theta}&ae^{-i\theta} \\ ab&ac&ad \end{matrix} ; q,q \right] Askey–Wilson polynomials No No ☒N - - - - Could not extract the name Askey-Wilson polynomials.
Full data:
Gold 60 Q_n(x;\alpha,\beta,N)= {}_3F_2(-n,-x,n+\alpha+\beta+1;\alpha+1,-N+1;1). Hahn polynomials Yes No ☒N - - - ☒N -
Full data:
Gold 61 \sum_{x=0}^\infty \frac{\mu^x}{x!} C_n(x; \mu)C_m(x; \mu)=\mu^{-n} e^\mu n! \delta_{nm}, \quad \mu>0 Charlier polynomials No No - - - ☒N - Did not found Charlier polynomial.
Full data:
Gold 62 p_n(q^{-x}+q^{x+1}cd;a,b,c,d;q) = {}_4\phi_3\left[\begin{matrix} q^{-n} &abq^{n+1}&q^{-x}&q^{x+1}cd\\aq&bdq&cq\\ \end{matrix};q;q\right] Q-Racah polynomials No - - - - - ☒N Did not find q-Recah polynomial. Since it is not a definition, and q-Recah are not supported by Mathematica, there is no translation possible.
Full data:
Gold 63 \displaystyle c_n(q^{-x};a;q) = {}_2\phi_1(q^{-n},q^{-x};0;q,-q^{n+1}/a) Q-Charlier polynomials Yes - - - - - - ☒N
Full data:
Gold 64 M_n(x,\beta,\gamma) = \sum_{k=0}^n (-1)^k{n \choose k}{x\choose k}k!(x+\beta)_{n-k}\gamma^{-k} Meixner polynomials No No - - - ☒N - Did not find Meixner.
Full data:
Gold 65 x(1-x) \frac {\partial^2F_1(x,y)} {\partial x^2} + y(1-x) \frac {\partial^2F_1(x,y)} {\partial x \partial y} + [c - (a+b_1+1) x] \frac {\partial F_1(x,y)} {\partial x} - b_1 y \frac {\partial F_1(x,y)} {\partial y} - a b_1 F_1(x,y) = 0 Appell series No No - ☒N - ☒N - Cannot match hidden arguments of Appell F1 function.
Full data:
Gold 66 \Theta_\Lambda(\tau) = \sum_{x\in\Lambda}e^{i\pi\tau\|x\|^2}\qquad\mathrm{Im}\,\tau > 0 Theta function of a lattice No No ☒N - - - - -
Full data:
Gold 67 \frac{d^2 S}{dz^2}+\left(\sum _{j=1}^N \frac{\gamma _j}{z - a_j} \right) \frac{dS}{dz} + \frac{V(z)}{\prod _{j=1}^N (z - a_j)}S = 0 Heine–Stieltjes polynomials No - - ☒N - - - Mistakenly detected Stieltjes constant. No translation possible for S.
Full data:
Gold 68 w(x) = \frac{k}{\sqrt{\pi}} x^{-1/2} \exp(-k^2\log^2 x) Stieltjes–Wigert polynomials Yes No ☒N - - - - -
Full data:
Gold 69 y^2=x(x-1)(x-\lambda) Modular lambda function Yes Yes - - - - - -
Full data:
Gold 70 P_1^{(\lambda)}(x;\phi)=2(\lambda\cos\phi + x\sin\phi) Meixner–Pollaczek polynomials Yes - - - - - ☒N -
Full data:
Gold 71 P_n^{(\alpha,\beta)}(z)=\frac{(\alpha+1)_n}{n!}\,{}_2F_1\left(-n,1+\alpha+\beta+n;\alpha+1;\tfrac{1}{2}(1-z)\right) Jacobi polynomials Yes Yes - - - - - -
Full data:
Gold 72 S_n(x^2;a,b,c)= {}_3F_2(-n,a+ix,a-ix;a+b,a+c;1). Continuous dual Hahn polynomials Yes - - - - - ☒N -
Full data:
Gold 73 P_n^{(\alpha,\beta)}=\lim_{t\to\infty}t^{-n}p_n\left(\tfrac12xt; \tfrac12(\alpha+1-it), \tfrac12(\beta+1+it), \tfrac12(\alpha+1+it), \tfrac12(\beta+1-it)\right) Continuous Hahn polynomials No No - ☒N - ☒N - Hidden argument cause mismatch.
Full data:
Gold 74 \sum^{b-1}_{s=a}w_n^{(c)}(s,a,b)w_m^{(c)}(s,a,b)\rho(s)[\Delta x(s-\frac{1}{2}) ]=\delta_{nm}d_n^2 Dual Hahn polynomials No - - ☒N - - - Not standard notation for dual Hahn polynomial. DLMF uses R. Further, dual Hahn does not exist in Mathematica.
Full data:
Gold 75 p_n(x;a,b,c|q)=a^{-n}e^{-inu}(abe^{2iu},ac,ad;q)_n*_4\Phi_3(q^{-n},abcdq^{n-1},ae^{i{(t+2u)}},ae^{-it};abe^{2iu},ac,ad;q;q) Continuous q-Hahn polynomials No No ☒N ☒N - - - Asterisk has index. Wrong LaTeX from Wikipedia Editor.
Full data:
Gold 76 p_n(x;a,b,c\mid q)=\frac{(ab,ac;q)_n}{a^n}\cdot {_3\Phi_2}(q^-n,ae^{i\theta},ae^{-i\theta}; ab, ac \mid q;q) Continuous dual q-Hahn polynomials No No ☒N ☒N - - Wrong LaTeX. q^-n only puts into the subscript but not n. Underscore mismatch.
Full data:
Gold 77 Q_n(x;a,b,N;q)=\;_{3}\phi_2\left[\begin{matrix} q^-n & abq^n+1 & x \\ aq & q^-N \end{matrix} ; q,q \right] Q-Hahn polynomials No No ☒N - - - - Cannot detect name of function.
Full data:
Gold 78 x= Al-Salam–Chihara polynomials No No - - - - - Wrong math detection.
Full data:
Gold 79 \Phi_n^*(z)=z^n\overline{\Phi_n(1/\overline{z})} Orthogonal polynomials on the unit circle No No - ☒N - - - Nested overline didnt match (bug).
Full data:
Gold 80 P_n(x) = c_n \, \det \begin{bmatrix}m_0 & m_1 & m_2 &\cdots & m_n \\m_1 & m_2 & m_3 &\cdots & m_{n+1} \\&&\vdots&& \vdots \\m_{n-1} &m_n& m_{n+1} &\cdots &m_{2n-1}\\1 & x & x^2 & \cdots & x^n\end{bmatrix} Orthogonal polynomials Yes - - - - - - No direct translation possible (indef number of arguments).
Full data:
Gold 81 \displaystyle p_n(x;a,b;q) = {}_2\phi_1(q^{-n},abq^{n+1};aq;q,xq) Little q-Jacobi polynomials Yes No ☒N - - - ☒N No translation for \littleJacobipolyp
Full data:
Gold 82 \displaystyle P_n(x;a,b,c;q)={}_3\phi_2(q^{-n},abq^{n+1},x;aq,cq;q,q) Big q-Jacobi polynomials Yes No ☒N - - - ☒N No translation for \bigqJacobipolyP
Full data:
Gold 83 P_n(x;a,b;q)=\frac{1}{(b^{-1}*q^{-n};q,n)}*_2\Phi_1(q^{-n},aqx^{-1};aq|q;\frac{x}{b}) Big q-Laguerre polynomials No No - ☒N - - - Again, invalid latex. The asterisk has the underscore.
Full data:
Gold 84 K_n(\lambda(x);c,N|q)=_3\Phi_2(q^{-n},q^{-x},cq^{x-N};q^{-N},0|q;q) Dual q-Krawtchouk polynomials No - - ☒N - - - Illegal LaTeX. Equal sign has underscore 3 (which is wrong). Further, dual q-Krawtchouk do not exist in Mathematica.
Full data:
Gold 85 P_{n}^{(\alpha)}(x|q)=\frac{(q^\alpha+1;q)_{n}}{(q;q)_{n}} Continuous q-Laguerre polynomials No No ☒N ☒N - - - Did not detect q-multi Pochhammer symbol.
Full data:
Gold 86 \displaystyle p_n(x;a|q) = {}_2\phi_1(q^{-n},0;aq;q,qx) = \frac{1}{(a^{-1}q^{-n};q)_n}{}_2\phi_0(q^{-n},x^{-1};;q,x/a) Little q-Laguerre polynomials No No ☒N ☒N - - - Could not match empty arguments (bug).
Full data:
Gold 87 y_{n}(x;a;q)=\;_{2}\phi_1 \left(\begin{matrix} q^{-N} & -aq^{n} \\ 0 \end{matrix} ; q,qx \right) Q-Bessel polynomials No No ☒N ☒N - - - Wrong LaTeX. Equal sign has subsript 2.
Full data:
Gold 88 h_n(ix;q^{-1}) = i^n\hat h_n(x;q) Discrete q-Hermite polynomials No - - ☒N - - - We correctly identified \discqHermitepolyhI but were not able to distinguish it from discqHermitepolyhII from RHS. Neither of them is translatable though.
Full data:
Gold 89 P_{n}(x;a\mid q) = a^{-n} e^{in\phi} \frac{a^2;q_n}{(q;q)_n} {_3}\Phi_2(q^-n, ae^{i(\theta+2\phi)}, ae^{-i\theta}; a^2, 0 \mid q; q) Q-Meixner–Pollaczek polynomials No No ☒N ☒N - - - Did not match underscore {_3}
Full data:
Gold 90 \displaystyle L_n^{(\alpha)}(x;q) = \frac{(q^{\alpha+1};q)_n}{(q;q)_n} {}_1\phi_1(q^{-n};q^{\alpha+1};q,-q^{n+\alpha+1}x) Q-Laguerre polynomials Yes No ☒N - - - ☒N -
Full data:
Gold 91 \sum_{n=0}^\infty H_n(x \mid q) \frac{t^n}{(q;q)_n} = \frac{1}{\left( t e^{i \theta},t e^{-i \theta};q \right)_\infty} Continuous q-Hermite polynomials No - - ☒N - - - Mistakenly detect Hermite polynomial but was continuous q-Hermite polynomial.
Full data:
Gold 92 w^{\prime\prime}+\xi\sin(2z)w^{\prime}+(\eta-p\xi\cos(2z))w=0. Ince equation Yes No - - ☒N ☒N - ODE.
Full data:
Gold 93 Q_v^\mu(x)= \cos(\mu\pi)\left(\frac{1+x}{1-x}\right)^{\mu/2}\frac{F(v+1,-v;1-\mu;1/2-2/x)} {\Gamma(1-\mu ) } Ferrers function No No - ☒N - ☒N - No information about gamma fuction and hypergeometric function.
Full data:
Gold 94 H_{-v}^{(1)}(z,w)=e^{v\pi i}H_v^{(1)}(z,w) Incomplete Bessel functions Yes - - - - - - ☒N
Full data:
Gold 95 K_v(x,y)=\int_1^\infty\frac{e^{-xt-\frac{y}{t}}}{t^{v+1}}dt Incomplete Bessel K function/generalized incomplete gamma function Yes No ☒N - - - - -
Full data: